Pﬁm@m u@mmﬂm@s%@w = qﬁ"'(':é - ‘ - i P~ > =1 —

M A F ALDIN.LU
I V E F Pl PER ST A
r E G R I_ D REP PROGRAMM e

-

N . TONE~L|_»0T_~|:f"'gS«'*'%’ SR A

lSTl CNR “”l-.T-ALY

W

November 22th, 2007 7<)

QUB, Belfast, UK f/ /} o

© 2006 GRIDCOMP GRIDS PROGRAMMING WITH COMPONENTS. AN ADVANCED COMPONENT PLATFORM FOR AN EFFECTIVE INVISIBLE GRID
IS A SPECIFIC TARGETED RESEARCH PROJECT SUPPORTED BY THE IST PROGRAMME OF THE EUROPEAN COMMISSION (DG INFORMATION SOCIETY AND MEDIA, PROJECT N°034442)

5 Prelude
5¢ Uni. Pisa and the HPC lab.

Al

¢ Motivation

A

¢ why adaptive and autonomic management

Alp

¢ why skeletons

Al

2¢ Behavioural Skeletons

“¢ parametric composite component with management

“¢ functional and non-functional description

5¢ families of behavioural skeletons
¢ GCM 1mplementation

“¢ preliminary experiments and performances

z7 X

PISA COMPUTER SCIENCE
DEPARTMENT & PARALLEL ARCH. LAB

1 ' . \85 dige
Al

Valle D'Aod o - :) . ‘ V.Giulia
¢ Computer Science Dept. S
% First in Italy (estab. 1968) qui)

¢ Research and teaching

Az

s ~ 70 tenures + lot of fellows

A

s¢ Parallel architecture lab. (current)

¢ 1 Full Prof. (IM. Vanneschi)

¢ 1 Associate Prof. (IM. Danelutto)

¢ 2 Researchers (M. Aldinucci, M. Coppola)
¢ 1 PostDoc (S. Campa)

¢ 2 Phd students (M. Meneghin, C. Bertoll),
s¢ 2 senior engineers (M. Torquati, R. Ravazzolo)

¢ 4 junior engineers + several master students (in thesis)

Ongoing

IN.SY.EME (MIUR-IT FIRB) Integrated System for Emergency - Jul. 2007, 36 m

FRIMP (Cassa di Risparmio di Pisa) Software for Network Processors Feb. 2007, 24 m

VirtuaLinux (Eurotech SpA) Roboust Virtual Clutering - Nov. 2006, 6 m

BEinGRID (EU-IP, 6th FP) The Grid infrastructure for the Retaill Management Experiment - Jun. 2006, 18 m
XtreemOS (EU-IP, 6th FP): Building and Promoting a Linux-based Operating System to Support Virtual
Organisations for Next Generation Grids - Jun. 2006, 48 m

GridComp (EU-STREP, 6th FP) Grid Component Model - June 2006, 30 m

SFIDA (MIUR FAR-ICT): Innovative platform supporting collaborative-business for Small-Medium
Enterprises - Sept. 2007, 24 m

CoreGrid (EU-Network of Excellence, 6th FP): Foundations, Software Infrastructures and Applications for
large scale distributed, Grid and Peer-to-Peer Technologies - 2004, 48 m

Completed

Galieo Pisa-ParisVII/INRIA (Exchange Programme) 2004 - 2006
MOPROSCO Pisa-ParisVII/INRIA (Exchange Programme) 2005 - 2007
Grid.it (MIUR FIRB) 2003 - 2006

GridCoord (EU-Special Action, 6th FP) 2004 - 2006

Vigoni Pisa-Berlino/Muenster (Exchange Programme) 2003 - 2005
SAIB (Ricerca Industriale MIUR) 2002 - 2004

Law 449/97 year 2000 (strategic projects MIUR-CNR) 2002 - 2004
Law 449/97 year 1999 (strategic projects MIUR-CNR) 2002 - 2004
ASI-PQE2000 (MIUR) 2001- 2002

Agenz1a2000 (MIUR) 2000-2002

Vigoni Pisa-Passau (Exchange Programme) 1998 - 2000
MOSAICO (MIUR 40%) 1998 - 2000

PQE2000 (CNR, ENA, INFN, Alenia Spazio) 1997 - 2000

4

KA

2¢ Research & dissemination

¢ 21 intl. journals (8 A-class), 35 intl. conferences (20 A-class),
26 intl. workshops & symposium, 12 parts of books, served as
editors for several journal and books, 2 large conferences
organised (400+ attendees), several invited talks

S

¢ Software (open source & copyrighted)

Al

s 2 tull programming environments for parallel languages
¢ with language compiler: SkiE, ASSIST

=
7

Al

st several libraries for parallel programming
¢ on top of Java, C, C++, Fortran, MPI, ACE, sockets, shmem, ...

R

3¢ servers and applications

st distributed shared memory & storage, web server farm, // datamining, ...

Al

st cluster virtualization, cluster robustness, storage virtualization

Ay
U

¢ VirtualLinux

S

>¢ Hierarchic model

¢ Expressiveness

Al

2 Structured composition

NA

>« Interactions among components

A

¢ Collective/group

¢ Configurable/programmable

¢ Not only RPC, but also stream/event

% NI aspects and QoS control

¢ Autonomic computing paradigm

4 .. .".- ¢ X
RS Cingasasin ®> S0 Ss S s :

Al

“¢// programming & the grid

7 concurrency eXploltatlon, concurrent activities set up, mapping/
scheduling, communication/synchronisation handling and data

allocation, ...

“¢ manage resources heterogeneity and unrelability, networks latency and
bandwidth unsteadiness, resources topology and availability changes,
firewalls, private networks, reservation and jobs schedulers, ...

.. and a non trivial QoS for applications
not easy leveraging only on middleware

our approach:
high-level methodologies + tools

Zm X

Managed Manager

COmpOﬂeﬁtS broked
QoS data‘f’ Analyse) L\ Contracy
(c) L -
- — \
- 8 - | —| Monitor \ Plan
=

~

—
; j Next ¢
< Execute P conﬁgutaﬂon

Al
N\

monitor: collect execution stats: machine load, service time, input/output queues

lengths,

¢ analyse: instantiate performance models with monitored data, detect broken contract, in
and 1n the case try to detect the cause of the problem

S plan: select a (predeﬁned or user defined) strategy to re-convey the contract to Validity.
The strategy 1s actually a “program” using execute API

¢ execute: leverage on mechanism to apply the plan

Al
N\

A
/N3

NUA
I\

7 X
CriCoMP () (oreCGRID—
SfRchig CAMILRERED A He S5ES - . : % . —

A

-« Management 1s dithcult
¢ Application change along time (ADL not enough)

5 How “describe” functional, non-functional features and

their inter-relations?

¢ The low-level programming of component and its
management 1s simply too complex

Al

¢ Component reuse 1s already a problem

¢ Specialising component yet more with management
strategy would just worsen the problem

¢ Especially if the component should be reverse engineered
to be used (its behaviour may change along the run)

RUA
(expres
2t Exploit

S

2t graph

10

2t Skeletons represent patterns of parallel computations

sed in GCM as graphs of components)

the inherent skeleton semantics

s¢ thus, restrict the general case of skeleton assembly

of any component " parametric networks of

components exhibiting a given property

A

2 enoug!

N general to enable reuse

R

¢ enoug

\I/
s Can be

2

h restricted to predetermine management strategies

enforced with additional requirements

¢ E.g.: Any adaptation does not change the functional

semantics

SridCOMP (5% 1

(oreGRARD—

11

Al

¢ Represent an evolution of the algorithmic skeleton
concept for component management

A

2¢ abstract parametric paradigms of component assembly

Al

'« specialized to solve one or more management goals

2
N

AQ
7

% self-configuration/optimization/healing/protection.

A

2« Are higher-order components

A

¢ Are not exclusive

A

¢ can be composed with non-skeletal assemblies via standard
components connectors

¢ overcome a classic limitation of skeletal systems

4 t E

12

NA

¢ Expose a description of its functional behaviour

A

¢ Establish a parametric orchestration schema of
INner components

Al

¢ May carry constraints that inner components are
required to comply with

¢ May carry a number of pre-defined plans aiming
to cope with a given self-management goal

VA

2¢ Carry an implementation (they are factories)

= X

13

Al

¢ Functional Replication

KA

2¢ Farm/parameter sweep (self-optimization)

A

¢ Simple Data-Parallel (self-configuring map-reduce)

¢ Active/Passive Replication (self-healing)

A

2« Proxy

/2

¢ Pipeline (coupled self-protecting proxies)

A

S Wrapp ers

A

¢ Facade (self-protection)

2

2t Many others can be borrowed from Design Patterns

2 x
Erizeome (571 Lo -

14

FUNCTIONAL REPLICATION

——1 AC) —

o
Functional Functional

|
server port

|client port »E_K
il &
; stream ‘ RPE

b A { T

Functional

_E server port
stream

W skeleton skeleton
o behaviour) behaviour
w Farm (e.g. Orc) (e.g. Orc)

¢ S = unicast, C = from_any, W = stateless inner component
5¢ Data Parallel

¢ S = scatter, C = gather, W = stateless inner component

S

2¢ Fault-tolerant Active Replication

¢ S = broadcast, C = get_one_in_a_set, W= stateless inner ...

S
IS
//l\\ [BN BN J
e, 1
Gri-COMP {5 (0reGRBBD—_
ShRstig CImQArarss Be We Gres Ll S] -
~=C2)
r 3 e

FUNCTIONAL REPLICATION
e

b T i Functional behaviour
server port‘@ 0--I glc:Iient port descrlptlon
5 (orchestration)
o

skeleton @
behaviour
(e.g. Orc) @
system(data, S, G, W, in,out, N) =
Stdata i) s b= <N W ings ot)) O lodh)
W, (in;, out;) =
ing.get >tk > process(tk) > r > (out;.put(r) | W;(in;, out;))

NA

2t Meant to parametrically expose all allowed adaptation

A

¢ Any AM policy that does not change this semantics 1s correct

A

2¢ As an example changing 7 in this schema 1s correct

2¢ Functional semantics 1s invariant from ¢, non-functional one 1s not
(and changing ¢ means changing the number of Ws for self-* purposes

V= A
7 a%

URIIRSAES B WS HEE -
%) 15

16

H—

1. Choose a schema

(.e.g. tfunctional replication)
ABC API 1s chosen
accordingly
b c il 2. Choose an inner component
(compliant to Be-Ske constraints)

3. Choose behavior of ports
(e.g. unicast/from_any,
scatter/gather)

B/LC

2

H

4. Wire 1t in your application.
Run 1t, then trigger adaptations

‘ : 5. Possibly, automatize the

ABC = Autonomic Behaviour Controller (implements mechanisms) PTOCESS with a Manager
AM = Autonomic Manager (implements policies)
B/LC = Binding + Lifecycle Controller

= y X
Grigoome () (oreGRAB—
SRSSHNG CINPARERSS as W GF G A .

17

FARM EXAMPLE (MANDELBROOT)

change // degree wnew contract (e.g9. Ts<Rk)

get_service_time raise "contract violation"

mandel
1 broot M
lunes S screen
gew ‘mawdel,l ‘ output |
broot
manolel
uwnieast '{ o 1" from_any

(0reGRAD—_

N

a3 dazzi@cannonau:~/Mandelbrot

Fle Edit View Terminal Tabs Help

[dazzi@cannonau Mandelbrot]$ java -cp .:../AutonomicComponents/:lib/ProActive.jar:lib/asm-2.2.1.jar:1ib/bouncy
castle.jar:lib/dtdparser.jar:lib/fractat-adl. jar:lib/fractal-gui.jar:1ib/fractal. jar:11b/fractal-swing.jar:11b
/javassist.jar:lib/jsch.jar:1ib/log4j.jar:lib/ow deployment scheduling.jar:1ib/SVGGraphics.jar:lib/xercesImpl.
jar -Djava.security.manager -Djava.security.policy="l1ib/proactive.java.policy” -Dfractal.provider="org.objec
eb.proactive.core.component.Fractive” -Dlog4j.configuration="file:proactive-logdj" Mai

19

¢ Many other skeletons already developed for GCM

Al

3¢ some mentioned before

2

¢ Easy extendible to stateful variants

R/

‘¢ Imposing inner component expose NF ports for state access

A

3¢ Policies not discussed here

A

¢ expressed with a when-event-if-cond-then-action list of rules

Al

‘¢ some exist, work ongoing ...

= X

20

TYPICAL LOG OF A RUN (EXPLAINED)

<Dast future:;>

g Avg. farm throughput
2 QoS contract --------- -
© ; ; ; ;
=
Q.
L
(@)
-
= .
=
—
)]
el
IS 6
. 2 | & N. of workers
g e N. of PEs with artificial load -------- 25

40 50 60 70 8 90 100 110
Time (minutes)

(oreGRAMD—_
. ‘;—”

21

OVERHEADS

new workers are mapped new workers are mapped on nodes already

on empty nodes running other instances of the same component
6,000
== Restart == New = Stop

4,500
£
< 3,000
0
—=
=
S
>
O 1,500

O —
5 10 15 20 25 30 35 40 45 50 565 60 656 70 756 80 85 90
N. of workers

2%

PROACTIVE/JAVA APPEARS QUITE
HEAVYWEIGHT
W.R. T. OTHER APPROACHES

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocells, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.
Dynamic reconfiguration of grid-aware applications in ASSIST.

Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

parmod kind Data-parallel (with shared state) Farm (without shared state)
reconf. kind add PEs remove PEs add PEs remove PEs
of PEs involved 1—2 2—4 4—8 2—1 4—2 8—4 1—-2 2—4 4—-8 2—1 4—-2 8—4
R; on-barrier 1.2 16 23 08 14 3.7 — — — — — —
R; on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ~0 ~0 ~0 ~0 ~0 ~0O
R 24.4 30.5 36.6 21.2 35.3 435 24.0 32.7 48.6 17.1 21.6 31.9

ﬁ

(0reGRRD.

, ——

23

Communication time

0 P—*\/ ——int[]

time (ms)
W

0 2000 4000 6000 8000 10000 Communication Bandwidth (Theoretical 12800 KB/s)
int[N]

600 /
500 /
400

e [

Bandwidth (KB/s)

O ’ T T T T
0 2000 4000 6000 8000 10000

int[N]

VARIATIONS AND FLAVOURS

RPC
producer-
consumers
A}
Functional Functional Functional
i t
slerver port client port server por o ®
el - o —f L
streaming = streaming RPC :
producer consumer producer-consumer >3 5
skeleton —
behaviour) behaviour
(e.g. Orc) (e.g. Orc)
|) T
AC

IT

%ﬁ i_j.| and even more ...

?

¥
or in general ... 5
U‘—”@

X

RPC or bzkrf:,fgﬂr RPC or
streaming (e.g. OrC) streaming
data dependencies data dependencies

o= S B
fn (0reG AR

25

“¢ synchronous and/or asynchronous
% stream and/or RPC

st programmable, possibly nondeterministic, relations among ports
’¢ wait for an item on port_A and/or one item on port_B

¢ 1n general, any CSP expression

2 But ... be caretul, this 1s the ASSIST model

S

’¢ all features described above + distributed membrane + autonomicity,

QoS contracts, limited hierarchy depth (i.e. 2)

2

2 sophisticated C++ implementation, language not easy to modify

N2

2 GCM should be enough expressive and not too complex

A

st we consider ASSIST as the complexity asymptote

26

N2

s Behavioural Skeletons

\!
7

Y
\\

Al
7\

!
I

templates with built-in management for the App designer

A

¢ methodology for the skeleton designer
¢ management can be changed/refined
“¢ just prove your own management is correct against skeleton functional description

Al

¢ can be freely mixed with standard GCM components

2¢ because once instanced, they are standard

¢ Already implemented on GCM

Al

¢ not happy about GCM runtime performances (can be improved)
¢ We also implemented in ASSIST with different performances

= '.‘. Lo 1

