
© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Components, GCM, and
Behavioural skeletons

M a r c o A l d i n u c c i
U n i v e r s i t y o f P i s a , I t a l y

(C o r e G R I D R E P P r o g r a m m e)

M . D a n e l u t t o , S . C a m p a
U n i v e r s i t y o f P i s a , I t a l y

P . K i l p a t r i c k
Q U B , U K

N . T o n e l l o t t o , P . D a z z i
I S T I - C N R , I t a l y

November 22th, 2007
QUB, Belfast, UK

Outline

Prelude
Uni. Pisa and the HPC lab.

Motivation
why adaptive and autonomic management

why skeletons

Behavioural Skeletons
parametric composite component with management

functional and non-functional description

families of behavioural skeletons

GCM implementation
preliminary experiments and performances

2

Computer Science Dept.
First in Italy (estab. 1968)
Research and teaching

Bachelor, master, and PhD programme
~ 70 tenures + lot of fellows

Parallel architecture lab. (current)
1 Full Prof. (M. Vanneschi)
1 Associate Prof. (M. Danelutto)
2 Researchers (M. Aldinucci, M. Coppola)
1 PostDoc (S. Campa)
2 Phd students (M. Meneghin, C. Bertolli),
2 senior engineers (M. Torquati, R. Ravazzolo)
4 junior engineers + several master students (in thesis)

Pisa Computer Science
Department & Parallel arch. Lab

3

Participation in Projects
(1997-2007)

Ongoing

IN.SY.EME (MIUR-IT FIRB) Integrated System for Emergency - Jul. 2007, 36 m
FRIMP (Cassa di Risparmio di Pisa) Software for Network Processors Feb. 2007, 24 m
VirtuaLinux (Eurotech SpA) Roboust Virtual Clutering - Nov. 2006, 6 m
BEinGRID (EU-IP, 6th FP) The Grid infrastructure for the Retail Management Experiment - Jun. 2006, 18 m
XtreemOS (EU-IP, 6th FP): Building and Promoting a Linux-based Operating System to Support Virtual
Organisations for Next Generation Grids - Jun. 2006, 48 m
GridComp (EU-STREP, 6th FP) Grid Component Model - June 2006, 30 m
SFIDA (MIUR FAR-ICT): Innovative platform supporting collaborative-business for Small-Medium
Enterprises - Sept. 2007, 24 m
CoreGrid (EU-Network of Excellence, 6th FP): Foundations, Software Infrastructures and Applications for
large scale distributed, Grid and Peer-to-Peer Technologies - 2004, 48 m

Completed

Galieo Pisa-ParisVII/INRIA (Exchange Programme) 2004 - 2006
MOPROSCO Pisa-ParisVII/INRIA (Exchange Programme) 2005 - 2007
Grid.it (MIUR FIRB) 2003 - 2006
GridCoord (EU-Special Action, 6th FP) 2004 - 2006
Vigoni Pisa-Berlino/Muenster (Exchange Programme) 2003 - 2005
SAIB (Ricerca Industriale MIUR) 2002 - 2004
Law 449/97 year 2000 (strategic projects MIUR-CNR) 2002 - 2004
Law 449/97 year 1999 (strategic projects MIUR-CNR) 2002 - 2004
ASI-PQE2000 (MIUR) 2001- 2002
Agenzia2000 (MIUR) 2000-2002
Vigoni Pisa-Passau (Exchange Programme) 1998 - 2000
MOSAICO (MIUR 40%) 1998 - 2000
PQE2000 (CNR, ENA, INFN, Alenia Spazio) 1997 - 2000

4

Scientific Productivity of the Lab
(1997-2007)

Research & dissemination
21 intl. journals (8 A-class), 35 intl. conferences (20 A-class),
26 intl. workshops & symposium, 12 parts of books, served as
editors for several journal and books, 2 large conferences
organised (400+ attendees), several invited talks

Software (open source & copyrighted)
2 full programming environments for parallel languages

with language compiler: SkiE, ASSIST

several libraries for parallel programming
on top of Java, C, C++, Fortran, MPI, ACE, sockets, shmem, ...

servers and applications
distributed shared memory & storage, web server farm, // datamining, ...

cluster virtualization, cluster robustness, storage virtualization
VirtuaLinux

5

CGM model key points

Hierarchic model
Expressiveness

Structured composition

Interactions among components
Collective/group

Configurable/programmable

Not only RPC, but also stream/event

NF aspects and QoS control
Autonomic computing paradigm

6

Why Autonomic Computing

// programming & the grid
concurrency exploitation, concurrent activities set up, mapping/
scheduling, communication/synchronisation handling and data
allocation, ...

manage resources heterogeneity and unreliability, networks latency and
bandwidth unsteadiness, resources topology and availability changes,
firewalls, private networks, reservation and jobs schedulers, ...

7

... and a non trivial QoS for applications
not easy leveraging only on middleware

our approach:
high-level methodologies + tools

Autonomic Computing paradigm

8

Monitor Plan

Execute

Analyse
broken
contract

next
configuration

QoS data

monitor: collect execution stats: machine load, service time, input/output queues
lengths, ...
analyse: instantiate performance models with monitored data, detect broken contract, in
and in the case try to detect the cause of the problem
plan: select a (predefined or user defined) strategy to re-convey the contract to validity.
The strategy is actually a “program” using execute API
execute: leverage on mechanism to apply the plan

C1

C2

C3

C4

C5

C6

Managed
components

Manager

Why skeletons 1/2

Management is difficult
Application change along time (ADL not enough)

How “describe” functional, non-functional features and
their inter-relations?

The low-level programming of component and its
management is simply too complex

Component reuse is already a problem
Specialising component yet more with management
strategy would just worsen the problem

Especially if the component should be reverse engineered
to be used (its behaviour may change along the run)

9

Why skeletons 2/2
Skeletons represent patterns of parallel computations
(expressed in GCM as graphs of components)

Exploit the inherent skeleton semantics
thus, restrict the general case of skeleton assembly

graph of any component ➠ parametric networks of
components exhibiting a given property

enough general to enable reuse

enough restricted to predetermine management strategies

Can be enforced with additional requirements
E.g.: Any adaptation does not change the functional
semantics

10

Behavioural Skeletons idea

Represent an evolution of the algorithmic skeleton
concept for component management

abstract parametric paradigms of component assembly

specialized to solve one or more management goals
self-configuration/optimization/healing/protection.

Are higher-order components

Are not exclusive
can be composed with non-skeletal assemblies via standard
components connectors

overcome a classic limitation of skeletal systems

11

Behavioural Skeletons
proprieties

Expose a description of its functional behaviour

Establish a parametric orchestration schema of
inner components

May carry constraints that inner components are
required to comply with

May carry a number of pre-defined plans aiming
to cope with a given self-management goal

Carry an implementation (they are factories)

12

Be-Skeletons families

Functional Replication
Farm/parameter sweep (self-optimization)

Simple Data-Parallel (self-configuring map-reduce)

Active/Passive Replication (self-healing)

Proxy
Pipeline (coupled self-protecting proxies)

Wrappers
Facade (self-protection)

Many others can be borrowed from Design Patterns

13

Functional replication

Farm
S = unicast, C = from_any, W = stateless inner component

Data Parallel
S = scatter, C = gather, W = stateless inner component

Fault-tolerant Active Replication
S = broadcast, C = get_one_in_a_set, W= stateless inner ...

...

14

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

stream stream

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W

AC

Functional
server port

AM

RPC

Functional replication

Meant to parametrically expose all allowed adaptation

Any AM policy that does not change this semantics is correct
As an example changing i in this schema is correct
Functional semantics is invariant from i, non-functional one is not
(and changing i means changing the number of Ws for self-* purposes

15

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

Wi(ini, outi) !
ini.get > tk > process(tk) > r > (outi.put(r) | Wi(ini, outi))

Functional behaviour
description

(orchestration)

system(data, S,G, W, in, out, N) !
S(data, in) | (| i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

system(data, S,G, W, in, out, N) !
S(data, in) | (| i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

ABC

GCM
implementation

16

W

W

W

W

W

W

1. Choose a schema
(.e.g. functional replication)
ABC API is chosen
accordingly

2. Choose an inner component
(compliant to Be-Ske constraints)
3. Choose behavior of ports

(e.g. unicast/from_any,
 scatter/gather)

W

W

B/LC

S CS C

4. Wire it in your application.
Run it, then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements mechanisms)
AM = Autonomic Manager (implements policies)

B/LC = Binding + Lifecycle Controller

5. Possibly, automatize the
process with a Manager

Farm example (Mandelbroot)
17

screen
output

mandel
broot

mandel
broot

mandel
broot

ABC

lines
gen S C

mandel
broot

mandel
broot

mandel
broot

farm

unicast from_any

get_service_time

change // degree

raise "contract violation"

new contract (e.g. Ts<k)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Not just farm (i.e. param sweep)

Many other skeletons already developed for GCM
some mentioned before

Easy extendible to stateful variants
imposing inner component expose NF ports for state access

Policies not discussed here
expressed with a when-event-if-cond-then-action list of rules

some exist, work ongoing ...

19

Typical Log of a Run (Explained)

20

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
h
ro

u
g
h
p
u
t
(t

a
s
k
s
/s

)

Avg. farm throughput
QoS contract

 0
 2
 4
 6
 8

 10
 12

110100908070605040

N
.
o
f
P

E
s

Time (minutes)

N. of workers
N. of PEs with artificial load

past future

new workers are mapped
on empty nodes

new workers are mapped on nodes already
running other instances of the same component

0

1,500

3,000

4,500

6,000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Overheads

21

Restart New Stop

O
ve

rh
ea

d
(m

s)

N. of workers

Proactive/Java Appears quite
heavyweight

w.r.t. other approaches

22

19

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.
Dynamic reconfiguration of grid-aware applications in ASSIST.

Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

Proactive Communication Time
(Int)

23

Communication time

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

int[N]

ti
m

e
 (

m
s)

int[]

Communication Bandwidth (Theoretical 12800 KB/s)

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

int[N]

B
a
n

d
w

id
th

 (
K

B
/

s)

int[]

Variations and Flavours

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

streaming
producer

streaming
consumer

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W

AC

Functional
server port

AM

RPC
producer-consumer

RPC
producer-

consumers

or in general ...

skeleton
behaviour
(e.g. Orc)

Sk

W

...

W

W

Cj

AC

AM

S1

...

C1

...

RPC or
streaming

data dependencies

RPC or
streaming

data dependencies

and even more ...

Abstracting Out Variants
n client and y server ports

synchronous and/or asynchronous

stream and/or RPC

programmable, possibly nondeterministic, relations among ports
wait for an item on port_A and/or one item on port_B

in general, any CSP expression

But ... be careful, this is the ASSIST model
all features described above + distributed membrane + autonomicity,
QoS contracts, limited hierarchy depth (i.e. 2)

sophisticated C++ implementation, language not easy to modify

GCM should be enough expressive and not too complex
we consider ASSIST as the complexity asymptote

25

Conclusions

Behavioural Skeletons
templates with built-in management for the App designer

methodology for the skeleton designer
management can be changed/refined

just prove your own management is correct against skeleton functional description

can be freely mixed with standard GCM components
because once instanced, they are standard

Already implemented on GCM
not happy about GCM runtime performances (can be improved)

We also implemented in ASSIST with different performances

26

