
© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

GCM Non-Functional
Features Advances

M a r c o A l d i n u c c i
&

M . D a n e l u t t o , S . C a m p a ,
D . L a f o r e n z A , N . T o n e l l o t t o , P. D a z z i

U n i P i s a & I S T I - C N R

e-mail: aldinuc@di.unipi.it

(Palma Mix)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

GridComp MODEL key points

Hierarchic model
Expressiveness

Structured composition

Interactions among components
Collective/group

Configurable/programmable

Not only RPC, but also stream/event

NF aspects and QoS control
Autonomic computing paradigm

2

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

GridComp MODEL key points
(some further thoughts)

Hierarchic model
Expressiveness, how to avoid push everything in the API?

Structured composition, how to exploit it?

Interactions among components
Collective/group, not only DP scatter/gather ...

Configurable/programmable, how to introduce polices?

Not only RPC, but also stream/event, is it true?

NF aspects and QoS control
Autonomic computing paradigm, how avoid to set-up a very
complex machinery to deal with Grid complexity?

3

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

GCM implementation status

GCM features under refinement

My fat-free (underhanded) wishes
Avoid fat specification

Any implementation will hardly be compliant

Maybe already too fat

Avoid fat implementation
Nobody will use it, especially in the HPC community

Trying to add a “dietetic” QoS control
less possible impact on the middleware, thus if the users
don’t want it, they should not spend time avoiding it

layered architecture

4

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Insulated AC Element Cycle

Monitor: collect execution stats: machine load, service time,
input/output queues lengths, ...
Analyze: instantiate performance models with monitored data,
detect broken contract, in and in the case try to individuate the
problem
Plan: select a (predefined or user defined) strategy to re-
convey the contract to valid status. The strategy is actually a
list of mechanism to apply.
Execute: leverage on mechanism to apply the plan

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed
component

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Autonomic Components

Management is difficult
Application change along time (ADL not enough)

How “describe” functional, non-functional features
and their inter-relations?

The low-level programming of component and its
management is simply too complex

Component reuse is already a problem
Specializing component yet more with management
strategy would just worsen the problem

Especially if the component should be reverse
engineered to be used (its behavior may change
along the run)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Behavioral Skeletons (BeSke)
Exploit skeleton idea for management

Common parallel programming paradigms which
management can be pre-determined

In a parametric way

Capturing several aspects of management
optimization, healing, configuration, protection

Can carry an implementation

Carry an explicit semantics
described via standard GCM ADL hook

Implementation cannot automatically derived
from the description

Description is useful to reason about management

7

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

BeSke Advantages

Each skeleton carries a semantics
Restrict the orchestration of composite components

I.e. contextualize components with respect to nesting

are Higher-Order functions

Management may be parametric and pre-determined

Behavior description
Parametric functional and non-functional behavior

Functional behavior should be invariant with respect to
parameter

Non-functional behavior is not invariant
E.g. performance, robustness, healing likely, ...

8

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

More on description

Aims to enable the designer to reason about
management

functional description enumerate the possible evolutions of
composite component

should comply with the intentional skeleton semantics

the management follows a path in this search space

the exploration is driven by evaluation of monitoring
variables, through QoS formulas

some variables come from the membrane

some from inner components, in this case they should be required in the
inner components

9

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Behavioral Skeletons

Fill the holes, in two steps
1. Scatter (S), Gather (G), AC & AM [skeleton designer]

2. Worker (W) & AM [application designer]

10

S

W

...

W

W
G

AC

Server port
(collective)

Client port
(collective)

Passive (AC)
(it is a fractal controller)

Active (AC+AM)
(AM is a component)

AC

AM

Component in the membrane?
We don’t care, really ...

The real issue is having an AC with its own
control thread

Just don’t add more fat
In general, the membrane is the RTS of the

component, so what does it mean
“component in the membrane” ?

NF interfaces
(server)

NF interfaces
(client & server)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

 1) Specialize the skeleton
with the behavior

Server port type (S)
Broadcast, DP scattercast, Unicast

Unicast: One-to-One_in_a_Set, scheduling is done across different calls

not in GCM-proactive, we developed our own version

Client port type (G)
From-any, GCM gathercast, reduce

Inner component pre-requisites
E.g. stateless, one func. server and one func. client port

Describe functional behavior
Currently in Orc (to be present CoreGRID@Heraklion)

11

S

W

...

W

W
G

AC

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

2) Use it

Instantiate the behavioral skeleton with inner
components

Select (statically or dynamically) the
management goal and its parameters

12

S

W

...

W

W
G

AC

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Example: Farm

S = Unicast, G = From-any, W is stateless

Self-optimizing
goal = sustain at least K transaction/sec with minimal
resource usage

AC can
Monitor: length of the queue of requests, W load status

Execute: add/destroy an instance of W

AM can
Heuristically keeps a low/high water mark, raise contract
violation, accept new bounds

13

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Example: Data PArallel

S = Scatter, G = Gather, W is stateless

Self-configuring
reconfiguring on new request

goal = keep resource balance (e.g. load, memory, disk ...)

AC can
Monitor: resource usage on Ws

Execute: add/destroy an instance of W, change scatter/
gather policy

AM can
Compute new policies, recruit fresh resources

14

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Example: Active Replication

S = Broadcast, G = Reduce, W is stateless
Reduce examples: average, vote, ...

Self-healing
goal = tolerate fault, tolerate Byzantine workers, ...

AC can
Monitor: fault detectors

Execute: add/destroy an instance of W

AM can
Exclude workers from the , recruit fresh ones

15

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Much More Under the Hood

Other cases can be covered with the same
skeleton

Gracefully extendible to stateful components
state serialization

Other skeletons under design
Inspired to software engineering literature

proxy, wrapper, superimposition, ...

will cover self-protection and self-configuration mostly

16

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Conclusions

Work is going on
Theory consolidation

Implementation and user experience

Current GCM status: mileage may vary
Exploring new formalization, e.g. behavioral skeletons

Development and learning curve
and consider we already implemented a similar system in C++ (ASSIST)

in many case we know what we would like to do, but we should find a
suitable trick to avoid a middleware “feature”

Middleware appears already a bit too fat?
Where is the error when the application does not work?

Performances non always satisfactory (experiments follows, tomorrow?)

17

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Communication Time (Int)

18

Communication time

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

int[N]

ti
m

e
 (

m
s)

int[]

Communication Bandwidth (Theoretical 12800 KB/s)

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

int[N]

B
a
n

d
w

id
th

 (
K

B
/

s)

int[]

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Communication Bandwidth (Theoretical 12800 KB/s)

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

Integer[N]

B
a
n

d
w

id
th

 (
K

B
/

s)

Integer[]

Communication Time (Integer)

19

Communication time

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000

Integer[N]

ti
m

e
 (

m
s)

Integer[]

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Farm SpeedUp 1

20

Speedup vs n. of workers (Tw=40

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

N. of workers

S
p

e
e
d

u
p

1024

2048

4096

8196

ideal

Tw(jobsize=*)=40 ms Tc(jobsize=1)=30 ms

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Farm SpeedUp 2

21

Speedup vs msg size (8 nodes)

0

1

2

3

4

5

6

7

8

9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Size of msg (# of Integers)

S
p

e
e
d

u
p

40 ms

80 ms

160 ms

320 ms

Ideal

