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Industry & research

The VirtuaLinux project
Entirely founded by Eurotech S.p.A.

Aims to solve industrial problems
They do need pure and applied research

Scientific goals published in A-class conferences

Developed software released as open source GPL



Problem statement

Cluster
collection of (high-density) legacy independent machines 
connected by means of a LAN

are fragile
master node is a single point of failure

disks-on-blades are a common source of node failure

are hard to install and to maintain
installation requires days

skilled administrator are needed
root administrator problem

legacy OSes 



Common industrial 
configuration

High-density blades + external SAN (or NAS)
RAID SAN much more efficient & robust

Robustness and speed are separately addressed (often at HW level)

Sometimes legally required (e.g. USA Sarbenes-Oxley law)

A number of linux distribution support this configuration
They require the customization of the standard distribution 

typically path and configuration of services

Physical Cluster + external SAN 
InfiniBand + Ethernet
4 Nodes x 4 CPUs
Cluster InfiniBand 192.0.0.0/24
Cluster Ethernet 192.0.1.0/24
Internet Gateway 131.1.7.6disk1 disk2
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Common hardware producer
problem

A single cluster configuration does not match all user 
expectation

I want CentOS, I need Ubuntu, I believe in Uindoz
the last one being much more a religion than an OS

Cluster life-cycle in 5 easy steps
1. the cluster is installed with factory distribution

2. the cluster falls in the hands of site system administrators 

3. they mix-up user requirements 
• and they believe to be wizards, in reality they sometimes are sorcerer's apprentices

• of course wizard exists, but they want to be paid, and this is forbidden by cluster owner 
religion

4. after two days they destroy the cluster

5. ask for the factory assistance, goto 1



Virtualization:
a brand-new solution?

Anyway, it works (it is abstraction, at the end)
High-level (e.g. JVM)

medium-level (e.g. FreeBDS jails)

low-level
Simulation (e.g. Cell), Binary translation (e.g. WMware, QEMU, ...),
paravirtualization (XEN, KVM, ...)

Make it possible to 
consolidate several OSes

make it possible to share a physical resource

insulate user OSes from lower-level OS 

Robert P. Goldberg describes the then state of things in his 1974 paper titled Survey of Virtual Machines Research. He says: "Virtual machine systems 
were originally developed to correct some of the shortcomings of the typical third generation architectures and multi-programming operating systems - 
e.g., OS/360." 

Christopher Strachey published a paper titled Time Sharing in Large Fast Computers in the International Conference on Information Processing at 
UNESCO, New York, in June, 1959. Later on, in 1974, he clarified in an email to Donald Knuth that:

" ... [my paper] was mainly about multi-programming (to avoid waiting for peripherals) although it did envisage this going on at the same time as a 
programmer who was debugging his program at a console. I did not envisage the sort of console system which is now so confusingly called time 
sharing.". Strachey admits, however, that "time sharing" as a phrase was very much in the air in the year 1960.



VirtuaLinux approach

A meta-distribution
get a Linux distribution and automatically configure it 

Master-less
Any master node; nodes are fully symmetrical

Disk-less
Provide the cluster with fully independent virtual volumes 
starting from a network-attached SAN

No customization of the OS are required

Transparently supporting Virtual Clusters
and the tools to manage them



Virtual clusters
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The Big Picture

diskless SMP blade N1 diskless SMP blade N2 diskless SMP blade Nm

 iSCSI SAN - set of RAID disks (e.g. Linux openfiler)

actively or passively replicated OS services S1, S2, ...  (e.g. TFTP, DHCP, NTP, LDAP, DNS, ...)

EVMS volumes (disk abstraction layer)

Virtual Cluster "tan" (e.g. 1 VM x blade,  4 CPUs per VM)

Virtual Cluster "red" (e.g. 2 VMs x blade, 1 CPU per VM)

Xen hypervisor (VMM) & Linux kernel
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Disks Abstraction Layer

A set of private and shared EVMS volumes 

are mounted via iSCSI in each node of the 

cluster:

A private disk (/root) and a OCFS2/GFS 

cluster-wide shared SAN are mounted in 

each node. 

EVMS snapshot technique is used for a time 

and space efficient creation of the private 

remote disk.

A novel plug-in of EVMS has been designed to 

implement this feature. 

Linux OS services

All standard Linux services are made fault-

tolerant via either active or passive replication:

Active: Services are started in all nodes; a 

suitable configuration enforces load 

balance on client requests. E.g. NTP, DNS, 

TFTP, DHCP. 

Passive (primary-backup): Linux HA with 

heartbeat is used as fault detector. E.g. 

LDAP, IP gateway.

Kernel Basic Features

All standard Linux modules.

Xen hypervisor, supporting Linux 

paravirtualization, and Microsoft Windows 

via QEMU binary translation (experimental).

Network connectivity, including Infiniband 

userspace verbs and IP over Infiniband.

iSCSI remote storage access.

OCFS2 and GFS shared file systems 

Virtual Clusters (VC)

Each virtual node (VM) of a VC is a virtual 

machine that can be configured at creation 

time. It exploits a cluster-wide shared 

storage.

Each VC exploits a private network and can 

access the cluster external gateway.

VMs of a VC can be flexibly mapped onto the 

cluster nodes.

VCs can be dynamically created, destroyed, 

suspended on disk.

private

volume N1

...



High Availability
by way of the replication of services 



High availability

24/7 cluster availability

Redundant hardware
 5 Power supplies, 4 independent network switches, ...

iSCSI-over-Infiniband or Fibre channel attached RAID

Redundant services
All nodes are identical, and there is no master

All OS services are replicated on all nodes
Any blade can be detached, or crash at any point in time with no 
impact on system availability 



Provide services without a 
(single) server

Service FT model Notes

DHCP active Pre-defined map between IP and MAC

TFTP active All copies provide the same image

NTP active Pre-defined external NTPD fallback via GW

IB manager active Stateless service

DNS active Cache-only

LDAP service-specific Service-specific master redundancy

IP GW passive Heartbeat with IP takeover (via IP aliasing)

Mail node-oriented Local node and relays via DNS

SSH/SCP node-oriented Pre-defined keys

NFS node-oriented Pre-defined  configuration

SMB/CIFS node-oriented Pre-defined  configuration



Novel boot sequence
supporting the boot of master-less systems



Install without a master

How to install a masterless cluster? 
Chicken and egg problem!

Solution: Metamaster 
A transient master node that is then transformed in a 
standard node

At the end of the installation, all nodes are identical 
and provide redundant services. 

No master node, fully symmetrical nodes



Storage Virtualization
a transparent constant time-space solution



Full vs no replication
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Each node (physical or virtual) has its 
own copy of the whole disk

Transparent, easy to build and update

OS does not need customisation

Inefficient in time and space - O
(n*size). Identical OS files are replicated

Each node (physical or virtual) share a 
disk (a file system, actually)

Not transparent, complex to build and 
update

OS does need customisation

Efficent in time and space - O(size). OS 
files are not replicated



VC requirements

Needs both transparency and time-space 
efficiency

Should be be independent from the OS

 “Frequent” & very time consuming operation 
e.g. 50 nodes x 10 GB x 100MB/s = ~ 2 hour 

very optimistic forecast

just to start/suspend the VC (and the system become irresponsive)

Consumes lot of disk space
e.g. 50 nodes x 5 GB = 100 GB  

for each VC and for the OS only - no user data here



VC storage properties

Nodes of a VC are homogenous (same OS)
99% of OS-related files are identical in all VMs

No reason to have heterogeneous VCs, just start more VCs of 
different kind 

It is low-level virtualization 
the virtualized is similar to the real

 Just keep them in a single copy
but don’t tell to the virtual nodes, they believe to be fully 
independent one each other

A novel usage of the snaphotting technique
copy-on-write



Snapshot tecnique
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Snapshots

Used to build online backups
Both original and snapshots can be written

File system independent, transparent

Supported by several tools, e.g. EVMS, LVM2
Implemented by linux standard kernel

dm_snapshot module (device mapper)

Can be implemented in several ways
copy-on-write, redirect-on-write, split-mirror, ...



Copy-on-write

Originale Snapshot

Writing
on original

Writing
on snapshot



Concurrent snapshots

Snapshots not designed for concurrency
All snapshot should be kept active in all nodes

Linux cannot keep active more than 8 snapshots per node

Novel semantics for snapshots
Relax snapshots semantics while maintaining correctness

“Mark” as read-only parts on the blocks



Storage virtualization
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Storage virtualization (VCs)
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Table 1: Intel MBI experiments legend.

cluster launches. With simple scripts it is possible to retrieve from the
database the current cluster running status and the physical mapping.

• A command-line library for the creation, the activation and the destruction
of the VCs. In the current implementation the library is composed by a
bunch of Python scripts that implement three main commands:

1. VC Create for the creation of the VC, it fills the database with VC-
related static information.

2. VC Control able to launch a previously created VC and deploy it on
the physical cluster according to a mapping policy. It is also able to
stop, suspend or resume a VC.

3. VC Destroy that purges a VC from the system; it makes the clean-up
of the database.

• A communication layer used for the staging and the execution of the VMs.
The current implementation is build on top of the Secure Shell support
(ssh).

• A virtual cluster start-time support able to dynamically configure the
network topology and the routing policies on the physical nodes. The
VC Control command relies on these feature for VC start-up or shutdown.

6 Experiments

The implementation of VirtuaLinux has been recently completed and tested.
We present here some preliminary experiments. The experimental platform
consists of a 4U-case Eurotech cluster hosting 4 high-density blades, each of
them equipped with a two dual-core AMD Opteron@2.2GHz and 8 GBytes of
memory. Each blade has 2 Giga-Ethernets and one 10 Gbits/s Infiniband NIC
(Mellanox InfiniBand HCA). The blades are connected with a (not managed)
Infiniband switch. Experimental data has been collected on two installation of
VirtuaLinux based on two different base Linux distributions:

• Ubuntu Edgy 6.10, Xen 3.0.1 VMM, Linux kernel 2.6.16 Dom0 (Ub-Dom0)
and DomU (Ub-DomU);

• CentOS 4.4, no VMM Linux kernel 2.6.9 (CentOS).
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CPU & OS Performances

Micro-benchmark Unit Ub-Dom0 Ub-DomU CentOS

Simple syscall usec 0.6305 0.6789 0.0822
Simple open/close usec 5.0326 4.9424 3.7018
Select on 500 tcp fd’s usec 37.0604 37.0811 75.5373
Signal handler overhead usec 2.5141 2.6822 1.1841
Protection fault usec 1.0880 1.2352 0.3145
Pipe latency usec 20.5622 12.5365 9.5663
Process fork+execve usec 1211.4000 1092.2000 498.6364

float mul nsec 1.8400 1.8400 1.8200
float div nsec 8.0200 8.0300 9.6100
double mul nsec 1.8400 1.8400 1.8300
double div nsec 9.8800 9.8800 11.3300

RPC/udp latency localhost usec 43.5155 29.9752 32.1614
RPC/tcp latency localhost usec 55.0066 38.7324 40.8672
TCP/IP conn. to localhost usec 73.7297 57.5417 55.9775
Pipe bandwidth MB/s 592.3300 1448.7300 956.21

Ub-Dom0 Ub-DomU Ub-DomU
Micro-benchmark vs vs vs

CentOS CentOS Ub-Dom0

Simple syscall +667% +726% +7%
Simple open/close +36% +34% -2%
Select on 500 tcp fd’s +51% +51% 0%
Signal handler overhead +112% +127% +7%
Protection fault +246% +293% +13%
Pipe latency +115% +31% -40%
Process fork+execve +143% +119% -10%

float mul ∼0% ∼0% ∼0%
float div ∼0% ∼0% ∼0%
double mul ∼0% ∼0% ∼0%
double div ∼0% ∼0% ∼0%

RPC/udp latency localhost +35% -7% -31%
RPC/tcp latency localhost +35% -5% -30%
TCP/IP conn. to localhost +32% +3% -22%
Pipe bandwidth -38% +51% +144%

Table 2: VirtuaLinux: evaluation of ISA and OS performances with the
LMbench micro-benchmark toolkit[?], and their differences (percentage).
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Storage Virtualization 
Performances

Additional layer on top of iSCSI read write rewrite

none (reference raw iSCSI access) 60 88 30

EVMS standard volume 66 89 32
EVMS snap, fresh files 63 88 31

EVMS snap, files existing on original 63 7 31

Table 1. Performances (MBytes/s) of the proposed stor-
age abstraction layer. Results are referred to Bonnie block
read/write/rewrite benchmarks on a iSCSI-attached SAN.

literature (and with CentOS installation, not reported here). Since
native drivers bypass the VMM, virtualization introduces no over-
heads. These drivers are not currently used within the VM (DomU),
as they cannot be used to deploy standard Linux services, which
are based on the TCP/IP protocol. At this aim, VirtuaLinux pro-
vides the TCP/IP stack on top of the Infiniband network (through
the IPoIB kernel module). Experiments show that this additional
layer is a major source of overhead (irrespectively of the virtual-
ization layer): the TCP/IP stack on top of the 10 Gigabit Infini-
band (Dom0 IPoIB) behaves as a 2 Gigabit network. The perfor-
mance of a standard Gigabit network is given as reference testbed
(Dom0 GEth). Network performance is further slowed down by
user domain driver decoupling that requires data copy between
front-end and back-end network drivers. As result, as shown by
DomU IPoIB figures, VC virtual networks on top of a 10 Gigabit
network, exhibits a Giga-Ethernet-like performances.

The third class of experiments evaluates storage abstraction
layer performance. Performance figures for block accesses3 are
shown in Table 1. For standard volumes, the storage abstraction
layer add no overhead with respect to direct access of iSCSI device
(first vs second line). The little performance gain is probably due to
the larger block size for storage accesses (block size in the second
case is 4 times the block size of the first case). As expected, writing
fresh files on a snapshot has the same performance of writing on
a standard volume (second vs third line). This case models the
normal usage of virtual disks. On the contrary, due to the copy-
on-write behaviour, a serious performance penalty is payed the
first time that a file, existing in the original, should be overwritten
(third vs fourth line). In this case, the linking between snapshot and
original blocks on the disks should be broken, then the data can be
written on the snapshot (with the consequent operations on meta-
data). Notice, however, that this penalty should be payed just the
first time, as the rewrite operation exhibits the same performance in
the two cases: after the first write the file on the snapshot became
“fresh”, i.e. fully independent from the original. Observe also, that
in VC usage, snapshots differentiates at the first boot, thus the
performance penalty is payed just once, and has no impact after
the first boot. In the proposed usage, just a little fraction of guest
OS files differentiates at the first boot. The storage abstraction layer
exhibits a similar behaviour for random accesses on small files: an
observable overhead is introduced only at the first touch of files
on the snapshots that are actually stored in the original. Eventually,
the proposed solution does not change the EVMS snapshot creation
speed, that is easily more than one order of magnitude faster than
full data cloning (only meta-data is copied).

3 Reads and writes are performed on large set of 1M Bytes files. The total
size is larger than the double of the main memory size in order to minimize
OS caching impact. The rewrite operation reads the file in blocks, modify a
byte per block, then overwrite the block.

6. Related Work
Cluster Virtualization idea appears in several contexts as evolution
of the single machine virtualization.

In the grid context, the idea evolved from the virtualization of
the grid node aiming at addressing several issues, such as the sup-
port for legacy applications, the security against untrusted code and
users, and the computation deployment independently of site ad-
ministration. Among the former proposals, Figueiredo et al. have
proposed the full virtualization of nodes [9], whereas the Denali
project has focused on supporting lightweight VMs [30]. The sup-
port for VCs and their management tend to be integrated in the
grid middleware, as an example in the Globus Toolkit 4 [10]. The
Xenoserver project [22] is building a geographically distributed in-
frastructure as an extension of the Xen VMM. The In-VIGO project
[1] proposed a distributed Grid infrastructure based on VMs, while
the Virtuoso [28] and Violin [24] projects explore relevant network-
ing issues. In this context, VCs are composed of heterogeneous
and geographically distributed virtual nodes. In a sense, they are
more grids than clusters of virtual nodes. Therefore, the research is
mainly focused on typical problems of grids, such as VM configu-
ration generation, VM deployment, security, taming long network
latencies, and instability of physical resources.

Also, VMware Lab Manager appears affine to a VC manager
[29]. It enables to create a centralized pool of virtualized servers,
storage and networking equipment shared across software devel-
opment teams. Automatically and rapidly set up and tear down
complex, multi-machine software configurations for use in devel-
opment and test activities.

The possibility to use snapshots as virtual disks is mentioned in
the LVM user guide [21], but only for a single platform. As dis-
cussed along the paper, even on a shared SAN, native LVM/EVMS
snapshots can be hardly used “as is” due to scalability and secu-
rity limitations. These limitations spring from the need to activate
all snapshots on all physical nodes, independently on virtual-to-
physical mapping and the status of the VC.

A plethora of existing solutions supports disk-less clusters, typ-
ically via NFS. Some of them natively supports disk-less clusters
on top of iSCSI [26]. Almost all of them use explicit copies of
node private data (either the full root directory or parts of it). These
solutions greatly increase the complexity and the fragility of the in-
stallation since some of the standard OS packages should be recon-
figured to write/read configuration and log files in different paths.
VirtuaLinux differentiates from all of them since enables the trans-
parent and efficient usage of standard Linux distributions, and na-
tively includes the full support for Xen-based VCs. To the best of
our knowledge, no Linux distribution currently achieves all the de-
scribed goals.

7. Conclusions
We have presented a general characterization of a Virtual Cluster,
i.e. a coherent aggregates of Virtual Machines sharing a local vir-
tual network and a virtual storage. The Virtual Cluster is a natural
evolution of Virtual Machine idea; we have shown that a basic im-
plementation of a system supporting Virtual Clusters can derived
from already existing tools, and notably, fairly independently from
a particular VMM.

We have elaborated on the basic design to provide Virtual Clus-
ter implementation with an efficient storage on reasonably general
physical cluster architecture. At this aim we have proposed a stor-
age abstraction layer specifically designed for homogeneous Vir-
tual Clusters, which leverages on the affinity of virtual disks within
a Virtual Cluster. Data replicated on several virtual disks, in particu-
lar guest OS files, and mapped on the same disk are stored avoiding
data replication. This enforces the fast creation of Virtual Clusters

Cluster Virtualization 9 2007/9/4
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Xen architecture
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