Mcmagec[Ey

European Research Consortium
~ for Informatics and Mathematics

CoreGRID: European Research Network on Foundations, Software Infrastructures
and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Autonomic Components in GCM

Marco Aldinucci, M. Danelutto, M. Vanneschi, D. Laforenza,
N. Tonellotto, S. Campa, P. Dazzi, G. Zoppi, P. Kilpatrick

University of Pisa Italy, ISTI-CNR ltaly, QUB Belfast UK

CoreGRID Institute on Programming Model
Scientific Advisory Board meeting, Amsterdam, Apr 29th, 2008
aldinuc@di.unipi.it
http.//www.coregrid.net

nformation Socie * *
Technologies, ‘

mailto:aldinuc@di.unipi.it
mailto:aldinuc@di.unipi.it
http://www.coregrid.net
http://www.coregrid.net

Activities held tn
_ CoreGRID Institute ow

Outline Programming Models

_ cridcomMP spin-off
‘Proj ect (ST’RE'P)

Part I (assessed work)

Motivations
GCM (coreGrid Component Model)

why adaptive and autonomic management, why skeletons

behavioural skeletons (in insulation)

demo

Part II (ongoing and future work)

formalisation of component and services
component and service is not a dichotomy

static and dynamic adaptation should not be a dichotomy

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Part [: Motivations ‘5: ’

* X

CGM MODEL KEY POINTS

2 Hierarchic model

% expressiveness

& structured composition

+ Interactions among components

% collective/group
configurable/programmable
% not only RPC/RM]I, but also stream/event

% Non-Functional aspects and QoS control

% autonomic computing paradigm

- adaptive and autonomic components

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 3

Part [: Motivations ‘5: ’

* X

WHY AUTONOMIC COMPUTING

%/ / programming & the grid

% concurrency exploitation, concurrent activities set up, mapping/scheduling,
communication/synchronisation handling and data allocation, ...

¥ manage resources heterogeneity and unreliability, networks latency and
bandwidth unsteadiness, resources topology and availability changes, firewalls,
private networks, reservation and jobs schedulers, ...

... and a non trivial user-defined QoS for applications

not easy leveraging only on middleware

our approach: high-level methodologies + tools

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 4

Part [: Motivations ‘5: ’

*

WHY AUTONOMIC COMPUTING
(USER-DEFINED QOS REQUIREMENTS FOR APPS)

2 Performance

% the app should sustain x transactions per second

% the app should complete each transaction in 7 seconds
% Security

% the link between P7 and P2 should be secured with &-szrong encryption
% the DB service 1s exposed by platform P3

2t Fault-tolerance

% the parallel server should survive to the failure of y platforms

... then consider that x, 4 P71, P2, P3, &, y can dynamically
change as may dynamically change the performance and
the state of the running environment

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 5

Part [: Motivations ‘i: ’

*

WHY SKELETONS

% Management is difficult

& application change along time (ADL not enough)
» how “describe” functional, non-functional features?

% the low-level programming of component and its management is
simply too complex

« Component reuse 1s already a problem

& specialising component yet more with management strategy would
just worsen the problem

% especially if the component should be reverse engineered to be
used (its behaviour may change along the run)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 6

Part I: BeSke (in insulation) = *

BEHAVIOURAL SKELETONS IDEA

“ Represent an evolution of the algorithmic skeleton
concept for component management

& abstract parametric paradigms of component assembly

& specialised to solve one or more management goals

- self-configuration/optimization/healing/protection.

% carry a semi-formal/formal description and an implementation

& they are component factories, actually

% Are higher-order components

2 Are not exclusive

can be composed with non-skeletal assemblies via standard components
connectors

¢ overcome a classic limitation of skeletal systems

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 7

Part |: BeSke (in insulation) ‘{: f}

*

FUNCTIONAL REPLICATION
(GCM IMPLEMENTATION)

1. Choose a schema
e.g. functional replication
ABC API is chosen accordingly

2. Choose an inner component
compliant to BeSke constraints

3. Choose behaviour of ports
e.g. unicast/ from_any, scatter/gather

4. Run your application
then trigger adaptations

5. Automatise the process

ABC = Autonomic Behaviour Controller (implements mechanisms) with a Mdﬂélgﬁr
AM = Autonomic Manager (implements policies)
B/LC = Binding + Lifecycle Controller

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 8

i
e R

Part |: BeSke (in insulation) = %

*

oooooo 8

stream
unicast

stream
from_any

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 9

e A
Part |: BeSke (in insulation) = % !**

*

EXAMPLE: DAT/ fF}\ALLEL (STATELESS)

8 ABC

H_EN

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 O

BYE — . o
o ey [ore G | D Part I: BeSke (in insulation) Y

_____——T—-—"“
DATA PARALLEL/ (5TATEFU!, DISTR. STATE)

JABC == -
I’ AM
B/LC Notes

e any number of server and
client ports (either RPC or
stream, in theory)

scatter
(init) e the model cannot
(structurally) enforce init
happens before requests on

other ports

e port reconfiguration and data
redistribution should be
atomic (no tasks should be
distributed in the middle.

e data can be reconfigured in a
distributed way (provided a
suitable data port abstraction
is defined)

broadcast
or scatter

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 1

Part I: BeSke (in insulation) ‘{ !:*

*

% Functional Replication

% Farm/parameter sweep (self-optimization)

% Data-Parallel (self-configuring map-reduce)

streaming » Active/Passive Replication (self-healing)
2 Proxy

Pipeline (coupled self-protecting proxies)
2 Wrappers

» Facade (self-protection)

skeleton—
behaviour
(e.g. Orc)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

FARM EXAMPLE (MANDELBROT)
change // degree wnew contract (e.9. Ts<R)

get_service_time ratse "contract violatton"

unleast from_a nwy

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 3

| ® iTerm Shell Edit View Bookmarks Window Help D G s M =) <« 98y LI
OO0 O Il khast.isti.cnr.it

EIREN] :: BEICIREIY J= KN Q

@

¥ DISPOSITIVI
. Macintosh HD
. Windows HD
iDisk
E1 s00Gb

e

Macintosh HD Network Windows HD

»
W
o
o
(g
o

» CONDIVISI

» POSIZIONI

» CERCA

[khast@&cannonau GridComp-Examples]$ ant mandelbrot-cannonau

B Part I: BeSke (in insulation) = %

P R OG R E S s management policies management co-ordination

QoS contracts mechanisms and policies
manager engine many open problems

monitoring API
reconfiguration API

component model passive BeSke

methodology
programming tools
NF & F features

naming

communication Q Q '
deployment (76,01‘/,/ On, “o //OG
sharing e 'OO/; 00/7
Co Q S
m ¢
Co /0 S
/77,00 O’?@
/7@/) /71(8
4
’7700,
e/ f@
U
(/res

area of interest 15

European Research Network

formalisation of component and services

adaptations, QoS contracts, orchestration of
managers (as services)

component and service 1s not a dichotomy
from GCM/Proactive to SCA/Tuscany

static and dynamic adaptation should not be a dichotomy

it we care about performance

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 6

Part II: formalisation ‘i* ;

*

MANAGER FORMALISATION & DESIGN

+t Hierarchic assemblies of component that may
structurally change at run-time. Issues:

% Formally represent adaptations

* they should be described in the AM and automatically applied
% the ADL give just a static view of the assembly

% Formally represent QoS contracts

% they should be described in the AM and automatically evaluated
% they should be projected and joint (almost automatically)

% Describe the interaction/orchestration among managers
% Globally, managers describe a distributed algorithm

#Some hints presented here

% ... but still many open problems (just a few discussed here)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 7

*
o !
I P *

* *

Part II: formalisation

FORMALISING ADAPTATIONS
% Graphs + graph rewriting

& rewriting rules represent possible adaptation patterns
% enough expressive ... even too much

2 some formalisation do not capture important concepts for // computing
such as locality of the rewriting, context-dependence correctness, ...

% e.g. double push-out, Milner’s bi-graphs

¢ restricting general graph rewriting
% Synchronised Hyperhedge Replacement (SHR, from Sensoria IP-FP6)
@ Architectural Design Rewriting (ADR, forthcoming)

Implementing concepts in GCM

% when-event-if-cond-then-act list of rules

* where act either an adaptation or a message to a set of companion
managers

+ as JBoss beans

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 8

i *
I
Bk *
* *

R Part II: formalisation

EXAMPLE: SHR

Rules
(SYNCHRONISED HYPEREDGE REPLACEMENT)

move component [® g'e e e i

: e.c. o = AM, ¢’=g¢,
f from1to g | s e DN gg g=g
(heep saie) ge f . ge f s s = external state
move component [e g'e [o o %I _ >

e.o. o = AM, o’=
t el o I s - s o 58— o
g @ —starto(g'l',s')— f C ge / s s, s° = external states

(fresh state) —

replicate component [o J /zz\—@ e — -
m ’ ’ * .g. g i AM’ g _g’
(keep state, . > N\

. rep(g’sl’ e s . . s= external state
change location) RIS ! Ed ’

Example: AM ask component f to change location and attach to a
new external state (application of 2nd rule - Aldinucci, Tuosto)

/\ -
/Wrta@,zl,slr— Aj\?\/.l o, /,—AM o] /.zl
- S s
9 o “startoly' V) —] f : 7] ge {1

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 1 9

Part II: BeSke (orchestration) ‘**:*!:*

ORCHESTRATION OF MANAGEMENT

Qos contract
(fr users) Structural

relationships
Management
overlay network

Cx = Component x
Cx', Cx" = Instances of C
M(Cx) = Manager of Cx

ZA\I/ANN

ce' - Cc7' — C8' ce" — C7" — (8"

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 20

Part II: BeSke (orchestration) ‘**: !:*

ORCHESTRATION OF MANAGEMENT

“ Managers are orchestrated via an overlay network

% 1n GCM naturally hierarchic (sort of “synch fat-tree”)

2 however, the orchestration between children of the same node is not
restricted and can be set up according to a user-defined goal

¥ 1n general, no restrictions

“methodologies to reason about management

¥ e.g. manager orchestration as service orchestration

% Orc to describe their orchestration (Misra, Cook, Hoare, ...)
reason on Orc programs to prove management global properties

% semi-formal reasoning for Orc (Aldinucci, Danelutto, Kilpatrick)
% papers at Europar 07, CoreGRID Symposium 07, IEEE PDP 08, ...

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 21

BWE

Information Society
Technologies

a) flat management b) ring management
orchestration orchestration

c) clustered management
orchestration

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

% we re-defined and implemented e
autonomic BeSke in SCA /Tuscany manager

proof-of-concept implementation management service

JBoss rule-based manager

¥ few differences

manager: JBoss rules vs POJO code
protocols: standard XML/SOAP vs Proactive

binding: static vs dynamic

& proposal for standard extension

task execution service

dynamic binding of components

Tuscany people shown interest

worker

> >

S worker
> >

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

23

1

O e paft H Component & Services -

Technologies

SCA/TUSCANY FARM PERFORMANCES

half of half of

the tasks the tasks
< - <€ >

1.4e+06
Measured Completion Time —+—

Ideal Completion time

1.2e+06

800000

[}
£
c
9o
ko
<%
IS
s}
O

600000

400000

200000

150
#workers Computation time (secs)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 24

Part II: Static & Dynamic ‘:* 5

ANALYSIS: OVERHEADS (GCM/PROACTIVE)

new workers are mapped new workers are mapped on nodes already
on empty nodes running other instances of the same component

6,000

4,500

3,000

Overhead (ms)

1,500

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

N. of workers = New — Stop

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 25

L1
Part Il: Static & Dynamic = %, -

*

ANALYSIS: OVERHEAD (ALTERNATIVE IMPL)

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.
Dynamic reconfiguration of grid-aware applications in ASSIST.
Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

parmod kind Data-parallel (with shared state) Farm (without shared state)
reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1—2 2—4 4—8 2—1 4—2 8—4 1—-2 2—4 4—-8 2—1 4—-2 8—4

R; on-barrier 1.2 16 2.3 08 14 3.7 — — — — — —
R; on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ~0 ~0 ~0 ~0 ~0 ~0O

Ry 24.4 305 36.6 21.2 353 435 24.0 32.7 486 17.1 21.6 31.9

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 26

19

Part II: Static & Dynamic

IT IS JUST C++ AGAINST JAVA?

“ No, unfortunately it 1s not so simple ...

% dynamic class loading (red vs blue zone of the previous chart)

% dynamic introspection

dynamic binding
& generic data serialisation, shared data alignment
& JIT, code factories, etc.
non optimised protocols
% look-ahead resource recruiting
% pre-deployment
% atomic multicast (replica management)

& consensus (reconf-safe-points)

and at the end ... C++ is usually a bit faster than Java

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

27

Part Il: Static & Dynamic %, ’

SUMMING UP ...

2 exploit both static and dynamic techniques

i represent adaptations as graph transformations

% 1n such a way only correct configuration can be generated (e.g. as types)
2 QoS constraints with free variables

2 bound free variables with values

% free variables can be bound at compile, launch time with constant or non
constant values

“ manage adaptation accordingly
“#uniformly define static and dynamic adaptations
% apply them the earlier is possible
» compile/deploy/launch/run-time

% here abstraction (e.g. high-level BeSke) become crucial

» idiom recognition and generative approach

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 28

CONCLUSIONS

2 Behavioural Skeletons

% templates with built-in management for the App designer
2 methodology for the skeleton designer

' management can be changed/refined

% just prove your own management is correct against skeleton functional description
% can be freely mixed with standard GCM components
already implemented on GCM (GridCOMP STREP)

2 Future work

% many interesting open problems
- irrespectively of buzzwords (e.g. grid/cyber-infrastructure)
- irrespectively specific technologies (e.g. component/services)

% this might mean we are trying to address the core of the problems

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 29

nformation Society

Technologies

THANK YOU

related CoreGRID TR

1. M. Aldinucci, M. Danelutto, and P. Kilpatrick.
Hierarchical autonomic management: a case study with skeletal systems.
CoreGRID Technical Report TR-0127, February 2008.

2. P. Kilpatrick, M. Danelutto, M. Aldinucci.
Prototyping and reasoning about distributed systems: an Orc based framework.
CoreGRID Technical Report TR-0102, August 2007.

3. P. Kilpatrick, M. Danelutto, M. Aldinucci.
Deriving Grid Applications from Abstract Models.
Technical Report TR-0085, April 2007.

4. M. Aldinucci, G. Antoniu, M. Danelutto, M. Jan.
Fault-tolerant data sharing for high-level grid programming: a hierarchical storage
architecture.
CoreGRID Technical Report TR-0058, August 2005.

5. M, Aldinucci, A. Benoit.
Automatic mapping of ASSIST applications using process algebra.
CoreGRID Technical Report TR-0016, October 2005.

6. M. Aldinucct, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, C. Zoccolo.
Parallel program/component adaptivity management
CoreGRID Technical Report TR-0014, September 2005.

7.]. Dunnweber, S. Gorlatch, M. Aldinucci, S. Campa, M. Danelutto.
Behavior Customization of Parallel Components for Grid Application Programming.
CoreGRID Technical Report TR-0002, April 2005.

8. M. Aldinucci, M. Danelutto, J. Dinnweber, S. Gotlatch.
Optimization Techniques for Implementing Parallel Skeletons in Distributed
Environments.
CoreGRID Technical Report TR-0001, January 2005.

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 30

