
CoreGRID: European Research Network on Foundations, Software Infrastructures
and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Autonomic Components in GCM
Marco Aldinucci, M. Danelutto, M. Vanneschi, D. Laforenza,

N. Tonellotto, S. Campa, P. Dazzi, G. Zoppi, P. Kilpatrick
University of Pisa Italy, ISTI-CNR Italy, QUB Belfast UK

CoreGRID Institute on Programming Model
Scientific Advisory Board meeting, Amsterdam, Apr 29th, 2008

aldinuc@di.unipi.it
http://www.coregrid.net

mailto:aldinuc@di.unipi.it
mailto:aldinuc@di.unipi.it
http://www.coregrid.net
http://www.coregrid.net

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Outline

Part I (assessed work)
Motivations

GCM (coreGrid Component Model)
why adaptive and autonomic management, why skeletons

behavioural skeletons (in insulation)
demo

Part II (ongoing and future work)
formalisation of component and services
component and service is not a dichotomy
static and dynamic adaptation should not be a dichotomy

2

Activities held in

- CoreGRID Institute on

Programming Models

- GridCOMP spin-off

project (STREP)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

CGM model key points

Hierarchic model
expressiveness
structured composition

Interactions among components
collective/group
configurable/programmable
not only RPC/RMI, but also stream/event

Non-Functional aspects and QoS control
autonomic computing paradigm

adaptive and autonomic components

3

Part I: Motivations

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Why Autonomic Computing

// programming & the grid
concurrency exploitation, concurrent activities set up, mapping/scheduling,
communication/synchronisation handling and data allocation, ...
manage resources heterogeneity and unreliability, networks latency and
bandwidth unsteadiness, resources topology and availability changes, firewalls,
private networks, reservation and jobs schedulers, ...

4

... and a non trivial user-defined QoS for applications

not easy leveraging only on middleware

our approach: high-level methodologies + tools

Part I: Motivations

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Why Autonomic Computing
(User-defined QoS requirements for Apps)

Performance
the app should sustain x transactions per second
the app should complete each transaction in t seconds

Security
the link between P1 and P2 should be secured with k-strong encryption
the DB service is exposed by platform P3

Fault-tolerance
the parallel server should survive to the failure of y platforms

5

... then consider that x, t, P1, P2, P3, k, y can dynamically
change as may dynamically change the performance and
the state of the running environment

Part I: Motivations

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Why skeletons

Management is difficult
application change along time (ADL not enough)

how “describe” functional, non-functional features?

the low-level programming of component and its management is
simply too complex

Component reuse is already a problem
specialising component yet more with management strategy would
just worsen the problem
especially if the component should be reverse engineered to be
used (its behaviour may change along the run)

6

Part I: Motivations

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Behavioural Skeletons idea
Represent an evolution of the algorithmic skeleton

concept for component management
abstract parametric paradigms of component assembly
specialised to solve one or more management goals

self-configuration/optimization/healing/protection.

carry a semi-formal/formal description and an implementation
they are component factories, actually

Are higher-order components

Are not exclusive
can be composed with non-skeletal assemblies via standard components
connectors

overcome a classic limitation of skeletal systems

7

Part I: BeSke (in insulation)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

ABC

Functional replication
(GCM implementation)

8

W

W

W

W

W

W

1. Choose a schema
e.g. functional replication
ABC API is chosen accordingly

2. Choose an inner component
 compliant to BeSke constraints

3. Choose behaviour of ports
 e.g. unicast/from_any, scatter/gatherW

W

B/LC

S CS C

4. Run your application
 then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements mechanisms)
AM = Autonomic Manager (implements policies)
B/LC = Binding + Lifecycle Controller

5. Automatise the process
 with a Manager

Part I: BeSke (in insulation)

ABC

W

W

W

W

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Example: farm

9

W

BC

S CS C

AM

stream
unicast

stream
from_any

Part I: BeSke (in insulation)

ABC

W

W

W

W

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Example: Data Parallel (stateless)

10

W

B/LC

S CS C

AM

Part I: BeSke (in insulation)

ABC

W

W

W

W

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Data Parallel (stateful, distr. state)

11

W

B/LC

S CS C

AM

S CS C

broadcast
or scatter

scatter
(init)

Notes
• any number of server and

client ports (either RPC or
stream, in theory)

• the model cannot
(structurally) enforce init
happens before requests on
other ports

• port reconfiguration and data
redistribution should be
atomic (no tasks should be
distributed in the middle.

• data can be reconfigured in a
distributed way (provided a
suitable data port abstraction
is defined)

Part I: BeSke (in insulation)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Variations and Flavours (examples)

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W

AC

Functional
server port

AM

skeleton
behaviour
(e.g. Orc)

Sk

W

...

W

W

Cj

AC

AM

S1

...

C1

...

Part I: BeSke (in insulation)

RPC or
streaming

ports

Functional Replication
Farm/parameter sweep (self-optimization)
Data-Parallel (self-configuring map-reduce)
Active/Passive Replication (self-healing)

Proxy
Pipeline (coupled self-protecting proxies)

Wrappers
Facade (self-protection)

screen
output

mandel
broot

mandel
broot

mandel
broot

ABC

lines
gen S C

mandel
broot

mandel
broot

mandel
broot

farm

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Farm example (Mandelbrot)

13

unicast from_any

get_service_time

change // degree

raise "contract violation"

new contract (e.g. Ts<k)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Mandelbroot

14

demo

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Progress

15

middleware

autonomic applications

component model
methodology
programming tools
NF & F features

naming
communication
deployment
sharing

monitoring API
reconfiguration API
passive BeSke

management policies
QoS contracts
manager engine

management co-ordination
mechanisms and policies
many open problems

component model features

adaptive components

autonomic components

now

area of interest

CoreGRID
kick-off 04

GridCOMP
kick-off 06

Part I: BeSke (in insulation)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Part II

16

P1 P6

P3 P4

P2 P5

P3●P4

formalisation of component and services
adaptations, QoS contracts, orchestration of
managers (as services)

component and service is not a dichotomy
from GCM/Proactive to SCA/Tuscany

static and dynamic adaptation should not be a dichotomy
if we care about performance

manager

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Manager formalisation & design

Hierarchic assemblies of component that may
structurally change at run-time. Issues:

Formally represent adaptations
they should be described in the AM and automatically applied
the ADL give just a static view of the assembly

Formally represent QoS contracts
they should be described in the AM and automatically evaluated
they should be projected and joint (almost automatically)

Describe the interaction/orchestration among managers
Globally, managers describe a distributed algorithm

Some hints presented here
... but still many open problems (just a few discussed here)

17

Part II: formalisation

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

formalising Adaptations
Graphs + graph rewriting

rewriting rules represent possible adaptation patterns
enough expressive ... even too much
some formalisation do not capture important concepts for // computing
such as locality of the rewriting, context-dependence correctness, ...

e.g. double push-out, Milner’s bi-graphs
restricting general graph rewriting

Synchronised Hyperhedge Replacement (SHR, from Sensoria IP-FP6)
Architectural Design Rewriting (ADR, forthcoming)

Implementing concepts in GCM
when-event-if-cond-then-act list of rules

where act either an adaptation or a message to a set of companion
managers
as JBoss beans

18

Part II: formalisation

•l

•g f
go〈g′,l′〉

•

s

•g′ •l • l′

•g f • s

•l

•g fstartσ〈g′,l′,s′〉

!

!

!

!

!

•

s

•g′ •l • l′ σ

•g f

!!!!!!!

""""
•

s
•

s′

•l

•g frep〈g′,l′〉

!

!

!

!

!

• s

•g′ •l •l′ f

•g f

!

!

!

!

• s

AM
startσ〈g,l1,s1〉

• l •l1

•g fstartσ〈g′,l′,s′〉 •
s

σ

AM • l •l1

•g f •
s

σ •

s1
σ

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Example: SHR
(Synchronised Hyperedge Replacement)

19

e.g. g = AM, g’=g,
 s = external state

move component
f from l to l’
(keep state)

➟

➟
move component
f from l to l’
(fresh state)

e.g. g = AM, g’=g,
 s, s’ = external states

replicate component
(keep state,
change location)

e.g. g = AM, g’=g,
 s= external state➟

...

➟

Example: AM ask component f to change location and attach to a
new external state (application of 2nd rule - Aldinucci, Tuosto)

Rules

Part II: formalisation

C1

M(C1)

C3

C4C2

M(C3)

C5'

M(C5')

C5''

M(C5'')

Cx = Component x

M(Cx) = Manager of Cx

Cx', Cx'' = Instances of Cx

Qos contract

(from users)

C5'

C6' C7' C8'

C6' C7' C8'

C6'' C7'' C8''

C1

C2 C4C3

C5''

C6'' C7'' C8''

Management

overlay network

Structural

relationships

Functional

network

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Orchestration of Management

20

Part II: BeSke (orchestration)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Orchestration of Management

Managers are orchestrated via an overlay network
in GCM naturally hierarchic (sort of “synch fat-tree”)

however, the orchestration between children of the same node is not
restricted and can be set up according to a user-defined goal

in general, no restrictions

methodologies to reason about management
e.g. manager orchestration as service orchestration

Orc to describe their orchestration (Misra, Cook, Hoare, ...)
reason on Orc programs to prove management global properties

semi-formal reasoning for Orc (Aldinucci, Danelutto, Kilpatrick)
papers at Europar 07, CoreGRID Symposium 07, IEEE PDP 08, ...

21

Part II: BeSke (orchestration)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Different Orchestrations (examples)

22

C

C
self

C2C1 C3 C4

a) flat management
orchestration

C

C
self

C2C1 C3 C4

b) ring management
orchestration

C

C
self

C2C1 C3 C4

c) clustered management
orchestration

...

...

...

site

manager
worker

worker

work

pool

manager

site

manager

worker

worker

work

pool

tasks

management service

ta
s
k
 e

x
e
c
u
ti
o
n
 s

e
rv

ic
e

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Component, services or both?

23

we re-defined and implemented
autonomic BeSke in SCA/Tuscany

proof-of-concept implementation

JBoss rule-based manager

few differences
manager: JBoss rules vs POJO code

protocols: standard XML/SOAP vs Proactive

binding: static vs dynamic

proposal for standard extension
dynamic binding of components

Tuscany people shown interest

Part II: Component & Services

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

SCA/Tuscany farm performances

24

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 2 4 6 8 10 12 14 16

C
o

m
p

le
ti
o

n
 t

im
e

#workers

Measured Completion Time
Ideal Completion time

Part II: Component & Services

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300

#
w

o
rk

e
r

Computation time (secs)

half of
the tasks

half of
the tasks

new workers are mapped
on empty nodes

new workers are mapped on nodes already
running other instances of the same component

0

1,500

3,000

4,500

6,000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Analysis: Overheads (GCM/Proactive)

25

New Stop

O
ve

rh
ea

d
(m

s)

N. of workers

Part II: Static & Dynamic

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Analysis: Overhead (Alternative Impl)

26 19

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.
Dynamic reconfiguration of grid-aware applications in ASSIST.
Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

Part II: Static & Dynamic

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

It is just C++ against Java?

No, unfortunately it is not so simple ...
dynamic class loading (red vs blue zone of the previous chart)
dynamic introspection
dynamic binding
generic data serialisation, shared data alignment
JIT, code factories, etc.
non optimised protocols

look-ahead resource recruiting
pre-deployment
atomic multicast (replica management)
consensus (reconf-safe-points)

and at the end ... C++ is usually a bit faster than Java

27

Part II: Static & Dynamic

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

summing up ...

exploit both static and dynamic techniques
represent adaptations as graph transformations

in such a way only correct configuration can be generated (e.g. as types)
QoS constraints with free variables

bound free variables with values
free variables can be bound at compile, launch time with constant or non
constant values
manage adaptation accordingly

uniformly define static and dynamic adaptations
apply them the earlier is possible

compile/deploy/launch/run-time

here abstraction (e.g. high-level BeSke) become crucial
idiom recognition and generative approach

28

Part II: Static & Dynamic

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Conclusions
Behavioural Skeletons

templates with built-in management for the App designer
methodology for the skeleton designer

management can be changed/refined
just prove your own management is correct against skeleton functional description

can be freely mixed with standard GCM components
already implemented on GCM (GridCOMP STREP)

Future work
many interesting open problems

irrespectively of buzzwords (e.g. grid/cyber-infrastructure)
irrespectively specific technologies (e.g. component/services)

this might mean we are trying to address the core of the problems

29

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Thank you

30

related CoreGRID TR
1. M. Aldinucci, M. Danelutto, and P. Kilpatrick.

Hierarchical autonomic management: a case study with skeletal systems.
CoreGRID Technical Report TR-0127, February 2008.

2. P. Kilpatrick, M. Danelutto, M. Aldinucci.
Prototyping and reasoning about distributed systems: an Orc based framework.
CoreGRID Technical Report TR-0102, August 2007.

3. P. Kilpatrick, M. Danelutto, M. Aldinucci.
Deriving Grid Applications from Abstract Models.
Technical Report TR-0085, April 2007.

4. M. Aldinucci, G. Antoniu, M. Danelutto, M. Jan.
Fault-tolerant data sharing for high-level grid programming: a hierarchical storage
architecture.
CoreGRID Technical Report TR-0058, August 2005.

5. M, Aldinucci, A. Benoit.
Automatic mapping of ASSIST applications using process algebra.
CoreGRID Technical Report TR-0016, October 2005.

6. M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, C. Zoccolo.
Parallel program/component adaptivity management
CoreGRID Technical Report TR-0014, September 2005.

7. J. Dünnweber, S. Gorlatch, M. Aldinucci, S. Campa, M. Danelutto.
Behavior Customization of Parallel Components for Grid Application Programming.
CoreGRID Technical Report TR-0002, April 2005.

8. M. Aldinucci, M. Danelutto, J. Dünnweber, S. Gorlatch.
Optimization Techniques for Implementing Parallel Skeletons in Distributed
Environments.
CoreGRID Technical Report TR-0001, January 2005.

