Towards a Formal Semantics for
Autonomic Components

Marco Aldinucci

University of Pisa, ltaly

Emilio Tuosto _
Univ. of Leicester, U.IK.
CoreGRID Symposium

August 29-26, 2008, Las Palmas de Gran Ganaria, Canary Island, Spain

Oudline

“* A motivating demo
* brand new, not in the paper

* A SHR-based semantics for GCM app adaptation

* just the graphical representation, here

** Management

* |Boss-based first-order logic contracts

* hierarchical management

s Evolutions

* already ongoing ...

Terminology - GCM

< GCM - Grid Component Mode
* Defined in Core GAEB—_ developed in Gridcone

@ ,
L&

'

» Features
* hierarchical components (Fractal-derived)
% collective communications and component interaction patterns

% autonomic management of notable (parallel) composite
components

* advanced programming models

® e.g. behavioural skeletons

* recently ETSI standardised

® deployment & others

(ore GR

B\>

x

A motivating example
IBM fingerprint recognition app
(mockup, GridComp)

cllentn on Ln

fingerprint DB |

—40— RPC or dataflow bindings ---- management bindings >+—< data sharing port bindings

(ore GRAED—

/) AM reacts (e.g. increasing // degree):
copying W I;
bindings (external, AM, StorageComp)
should be preserved;
DB partitions (VWx state) should be
redistributed via StorageComp

6) AM may sense a changed answer time
(e.g. increased), due to a dataset
size/kind and/or platform status change

5) repeat 2-3-4 ... 2-3-4 ..,
4) clients get the answer OR(W [, W2,..)

3) each worker matches the fingerprint
against its DB partition

2) clients broadcast requests to all workers

|) references to DB slices are scattered

IO

ore GRED—_
C A+B— GridconmF

(zlobal vs local view

“* This is a global view of the application

* somehow adaptation are seen by way of the sky-cam
components are created, bindings are drawn ... but who do 1t ¢

¢ This global behaviour should be achieved as the
coordination of local operations

* local operations (independently specified)

* user-defined (local) policies

® determining a global behaviour (e.g. which adaptation should be
preferred, among all possible)

. .
Core BAPB—__ GridconrP &0

Semantics rationale

% Formal specification is important for autonomic app

* ADL in not enough; it describes a static view

* adaptation operation should be automatica

X correctness (and other) should be enforcec
adaptation

ly managed

beyond across

* We consider dynamically evolving component assemblies

X suitable representation for adaptive and autonomic applications

* by using SHR as specification methodology

o,
Core GRMB— GridcomrP &7

Terminology - SHR

 SHR - Synchronised Hyperedge Replacement
* One of the theoretical tools of -~ (IP-6FP)

'
Alp.»
'_’.

** Features

nodef1

node3

X hyperedges, I.e. edges connecting—mahy nodes

® Trom now on exchange edges (boxes) with nodes (circles)

node?2

® send/recy, unicast, multicast, broadcast, scatter; gather, ...
* rewrite by way of synchronised context-free productions

* productions impose conditions on adjacent nodes

X components’ behaviour independently specified by productions
* global transitions as application of compatible productions

X l.e.enables local adaptations

Some adaptation operations

go keep the external state (if any)
Migration
start start from a fresh external state
component replica share external state
share .
with source component
Replication — .
co component replica Is created with a fresh
24 external state
. . kill the component
Kill kill P

. ' '
[* == tB\\: GridCOMP * 20

(detach bindings, garbage collect, ...)

Adaptation ops as SHR axioms

s, s" = external states; g, ¢ = managers; 1, I’ = locations

move Component li g e o e
f from1to I oly'.1 s N\ =f e.o. =0
Je go(g’,l") f . e f| o s g 8—8
(keep state) L
move component [o g Jo o ?
f fromlto!’ s - s e.o. 0=0’ s £ §’
g ® —starto(g’,l',s")\— f ° ge f ¢ ¢ & 878>

(fresh state) —

replicate component [® Jo— e e 7
(keep state, "= ﬁ c.g g=¢g
/]

. ge re nv ® S °
change location) P11 !

replicate component [e /‘\
(fresh state, g LfH/ﬁ'\° I e egsts

change location)

=
[
e
ot
—~
~
kﬁ_.
o
(Va)

kill component ge

i g PY ® S

Core GRFD—

SHR Inference rules...in one slide

TG, Sorg, TG Lo kg,

(TU®) N (IUP) =) The system .cz.ln.do
Parallel BTN whatever disjoint
F,F/ - Gl’Gll B (I), O GQ‘G/Q

subsystems do

. A The system can do any
Restrict I'zh-Gi S Tab Gy A@) =eVA@) =T

transition not requiring
T e Gy A} b Go any synchronisations on

restricted node

)\ x and y can be fused
Merge ALFANC: Tk AN provided that they
g Tlz/y] F Gilz/y] Afw,r} Oz /y| F vU Golx/ylp perform compatible

synchronisation actions

Example

starto(g,l1,s1) | AM ® | .ll
/ /\/S
g e starto(g’,l’,s") f ° o
\ 4
/_\
/ AM/\.Z/%
g e f . o | o o |
\— / N

AM asks component f to change location and attach to a new
external state (application of start rule)

Observe that hyperedges can be used to represent very different
concepts/attributes (e.g. location, store, manager hooks)

(ore GRID-

Driving adaptations

¢ Managers drive the adaptation process

* choose among all possible adaptations

* in a distributed way

% Implementing concepts in GCM

X when-event-if-cond-then-act list of rules

* where act either an adaptation or a message to a set of
companion managers

* as |Boss Drools

® first order logic

® maybe not fuzzy enough

\
i { N S L
3P S 13

A simple contract

rule "CheckInterArrivalRate"
salience 5

when
SarrivalBean : ArrivalRateBean(value < ManagersConstants.LOW PERF LEVEL)

then
SarrivalBean.setData(ManagersConstants.notEnoughTasks VIOL) ;
SarrivalBean.fireOperation(ManagerOperation.RAISE VIOLATION) ;

System.out.println("InterArrivalTime not enough - Raising a violation");

end
rule "CheckRateLow"
when
SdepartureBean : DepartureRateBean(value < ManagersConstants.LOW PERF LEVEL)
SparDegree: NumWorkerBean(value <= ManagersConstants.MAX NUM WORKERS)
then
REPLICATE_ SHARE);

SdepartureBean.fireOperation(ManagerOperation.

$SdepartureBean.fireOperation(ManagerOperation.BALANCE LOAD);

System.out.println("Adding "+ManagersConstants.ADD WORKERS+ "workers");

end
rule "CheckRateHigh"
when
SdepartureBean : DepartureRateBean(value > ManagersConstants.HIGH PERF LEVEL)
SparDegree: NumWorkerBean(value > ManagersConstants.MIN NUM WORKERS)
then
SdepartureBean.fireOperation(ManagerOperation.KILL) ;
SdepartureBean.fireOperation(ManagerOperation.BALANCE LOAD) ;
System.out.println("Rate "+SdepartureBean.getValue()+" (Removing 1 workers)");
end

{

';BE\‘\, GridCONMP - -

Core BR-

Orchestration of managers (overlay)

C6

RG]

Qos contract

(fro$sers) Structural

relationships

Management
mf overlay network
X_— Functional
network

Cx = Component x
Cx', Cx" = Instances of C
M(Cx) = Manager of Cx

C6| — C7| —> C8l CGII — C7|l — C8||

Conclusion

* We introduced few component adaptation operations
X existing in GCM
X able to capture typical adaptation patterns of many grid apps

* We detall a semantics for these operations

X based on SH

R

X suitable fort
semantics an

ne description of component concurrent
d the run-time evolution of assemblies

¢ We discuss the appropriateness of the level of abstraction
chosen to describe adaptation operations

X to support the design of component-based applications and
their autonomic management

. .
Core BAPB—__ GridconrP &0

Future works

¢ Present work represent just a starting point

X establishing a common background with other communities

* understanding the feasibility of the approach

% Currently working at exploiting the formalisation for
X proving interesting properties ..

X setting up a framework to derive optimised adaptation
protocols

@ for example let us consider adaptation overhead ...

Analysis: Overheads (GCM/Proactive)

new workers are mapped new workers are mapped on nodes already
on empty nodes running other instances of the same component
6,000
- 4,500
g
ge,
o
< 3,000
L
>
O
1,500
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
N. of workers = New — Stop
Core GREB— Gridcome &1 18

Analysis: Overhead (Alternative Impl)

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.

Dynamic reconfiguration of grid-aware applications in ASSIST.
Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

parmod kind Data-parallel (with shared state)

reconf. kind add PEs

remove PEs

of PEs involved 1—2 2—4 4—8 2—1 4—2 8—4

R; on-barrier 1.2 16 2.3
R; on-stream-item 4.7 12.0 33.9

Ry 24.4 30.5 36.6

0.8 14 3.7
3.9 6.5 191

21.2 35.3 435

Farm (without shared state)

add PEs remove PEs
1—22—4 4—-8 2—1 4—2 8—4
240 32.7 48.6 17.1 21.6 31.9

[t is just C+ + against Java?

“* No, unfortunately it is not so simple ...

* dynamic class loading (red vs blue zone of the previous chart),
dynamic introspection, dynamic binding

X generic C

X |IT, code factories, etc.

ata serialisation, shared data alignment

X non optimised protocols

® look-ahead resource recruiting, pre-deployment, atomic multicast
(replica management), consensus (reconf-safe-points)

® sequence of reconfiguration operations

® add + rebalance + move means:

stop-

add-start-stop-rebalance-start-stop-move-start

for each involved component - 4 of them can be avoided

Dynamically compiling adaptations

source adaptg adapt
designer specify adaptation @ P . @ Pt . glp adapte N @
operation semantics at the I Z J 4
highest possible level
C C C C
e.g. > e.g. g. e.g.
JIT s JIT JIT JIT
binary ,'

operations are really

peratl | "1 Clydaptdpt = C&bddpmbbd t ; Gaptadt] -
adaptation protocols. @l/ @2 % @ 4

ifecycle, resource recrurting,
creation, binding, ...)

]
we need it for the “env loop - outer AC loop” (see invited talk)

..e. for dynamically introducing new contracts or adaptations
21 ’

Core G E%FB\ -

ore GRED—_
C _ GridCoMP 22

