
Marco Aldinucci
University of Pisa, Italy

Emilio Tuosto
Univ. of Leicester, U.K.

Towards a Formal Semantics for
Autonomic Components

CoreGRID Symposium
August 25-26, 2008, Las Palmas de Gran Canaria, Canary Island, Spain

Outline

❖ A motivating demo
✴ brand new, not in the paper

❖ A SHR-based semantics for GCM app adaptation
✴ just the graphical representation, here

❖ Management
✴ JBoss-based first-order logic contracts

✴ hierarchical management

❖ Evolutions
✴ already ongoing ...

2

❖ GCM - Grid Component Model
✴ Defined in developed in

❖ Features
✴ hierarchical components (Fractal-derived)

✴ collective communications and component interaction patterns

✴ autonomic management of notable (parallel) composite
components

✴ advanced programming models
๏ e.g. behavioural skeletons

✴ recently ETSI standardised
๏ deployment & others

Terminology - GCM
3

clientn on L
n

clientb on L
b

clienta on L
a

W1 on L
1

W2 on L
2

AM on L
3

transient
StorageComp

DP

datasetComp
on L

a

fingerprint DB

A motivating example

4

RPC or dataflow bindings management bindings data sharing port bindings

1) references to DB slices are scattered
2) clients broadcast requests to all workers

3) each worker matches the fingerprint
 against its DB partition

4) clients get the answer OR(W1,W2,...)

6) AM may sense a changed answer time
(e.g. increased), due to a dataset

 size/kind and/or platform status change

clientn on L
n

clientb on L
b

clienta on L
a

W1 on L
1

W2 on L
2

AM on L
3

transient
StorageComp

DP

datasetComp
on L

a

fingerprint DB

W3 on L
3

7) AM reacts (e.g. increasing // degree):
copying W1;
bindings (external, AM, StorageComp)
should be preserved;
DB partitions (Wx state) should be
redistributed via StorageComp

5) repeat 2-3-4 ... 2-3-4 ...

IBM fingerprint recognition app
(mockup, GridComp)

demo

5

Global vs local view

❖ This is a global view of the application
✴ somehow adaptation are seen by way of the sky-cam

components are created, bindings are drawn ... but who do it ?

❖ This global behaviour should be achieved as the
coordination of local operations
✴ local operations (independently specified)

✴ user-defined (local) policies
๏ determining a global behaviour (e.g. which adaptation should be

preferred, among all possible)

6

Semantics rationale

7

❖ Formal specification is important for autonomic app
✴ ADL in not enough; it describes a static view

✴ adaptation operation should be automatically managed

✴ correctness (and other) should be enforced beyond across
adaptation

❖ We consider dynamically evolving component assemblies
✴ suitable representation for adaptive and autonomic applications

✴ by using SHR as specification methodology

Terminology - SHR
❖ SHR - Synchronised Hyperedge Replacement

✴ One of the theoretical tools of (IP - 6FP)

❖ Features
✴ hyperedges, i.e. edges connecting many nodes

๏ from now on exchange edges (boxes) with nodes (circles)
๏ send/recv, unicast, multicast, broadcast, scatter, gather, ...

✴ rewrite by way of synchronised context-free productions

✴ productions impose conditions on adjacent nodes

✴ components’ behaviour independently specified by productions

✴ global transitions as application of compatible productions

✴ i.e. enables local adaptations

8

node3HE

node1

node2

Some adaptation operations

9

Migration
go keep the external state (if any)

start start from a fresh external state

Replication
share

component replica share external state
with source component

copy
component replica is created with a fresh
external state

Kill kill
kill the component
(detach bindings, garbage collect, ...)

•l

•g f
go〈g′,l′〉

•

s

•g′ •l • l′

•g f • s

•l

•g fstartσ〈g′,l′,s′〉

!

!

!

!

!

•

s

•g′ •l • l′ σ

•g f

!!!!!!!

""""
•

s
•

s′

•l

•g frep〈g′,l′〉

!

!

!

!

!

• s

•g′ •l •l′ f

•g f

!

!

!

!

• s

•l

•g • s

•l

•g fkill〈〉 • s

•l

•g frepσ〈s′,l′〉

!!!!!
• s

f •l • l′ • s′

•g f

!!!!

• s

Adaptation ops as SHR axioms

10

e.g. g=g’
move component

f from l to l’
(keep state)

➟

➟
move component

f from l to l’
(fresh state)

replicate component
(keep state,

change location)
➟

➟

➟

replicate component
(fresh state,

change location)
e.g. s ≠ s’

kill component

s, s’ = external states; g, g’ = managers; l, l’ = locations

e.g. g=g’, s ≠ s’

e.g. g=g’

Γ, x ! G1
Λ−→ Γ, x ! G2 Λ(x) = ε ∨ Λ(x) = τ

Γ ! νx G1
Λ\{x}−−−−→ Γ ! νx G2

Γ ! G1
Λ−→ Φ ! G2 Γ′ ! G′

1
Λ′
−→ Φ′ ! G′

2

(Γ ∪ Φ) ∩ (Γ′ ∪ Φ′) = ∅

Γ,Γ′ ! G1|G′
1

Λ∪Λ′
−−−→ Φ, Φ′ ! G2|G′

2

Γ, x, y ! G1
Λ−→ Φ ! G2

Γ[x/y] ! G1[x/y]
Λ,{x,τ,}−−−−−→ Φ[x/y] ! νU G2[x/y]ρ

SHR Inference rules...in one slide

11

Parallel

Restrict

Merge

The system can do
whatever disjoint
subsystems do

The system can do any
transition not requiring
any synchronisations on

restricted node

x and y can be fused
provided that they
perform compatible

synchronisation actions

Example

AM asks component f to change location and attach to a new
external state (application of start rule)

Observe that hyperedges can be used to represent very different
concepts/attributes (e.g. location, store, manager hooks)

12

AM
startσ〈g,l1,s1〉

• l •l1

•g fstartσ〈g′,l′,s′〉 •
s

σ

AM • l •l1

•g f •
s

σ •

s1
σ

➟

Driving adaptations
❖ Managers drive the adaptation process

✴ choose among all possible adaptations

✴ in a distributed way

❖ Implementing concepts in GCM
✴ when-event-if-cond-then-act list of rules

✴ where act either an adaptation or a message to a set of
companion managers

✴ as JBoss Drools
๏ first order logic

• maybe not fuzzy enough

13

A simple contract
rule "CheckInterArrivalRate"
 salience 5
 when
 $arrivalBean : ArrivalRateBean(value < ManagersConstants.LOW_PERF_LEVEL)
 then
 $arrivalBean.setData(ManagersConstants.notEnoughTasks_VIOL);
 $arrivalBean.fireOperation(ManagerOperation.RAISE_VIOLATION);
 System.out.println("InterArrivalTime not enough - Raising a violation");
end
rule "CheckRateLow"
 when
 $departureBean : DepartureRateBean(value < ManagersConstants.LOW_PERF_LEVEL)
 $parDegree: NumWorkerBean(value <= ManagersConstants.MAX_NUM_WORKERS)
 then
$departureBean.fireOperation(ManagerOperation. REPLICATE_SHARE);
 $departureBean.fireOperation(ManagerOperation.BALANCE_LOAD);
 System.out.println("Adding "+ManagersConstants.ADD_WORKERS+ "workers");
end
rule "CheckRateHigh"
 when
 $departureBean : DepartureRateBean(value > ManagersConstants.HIGH_PERF_LEVEL)
 $parDegree: NumWorkerBean(value > ManagersConstants.MIN_NUM_WORKERS)
 then
 $departureBean.fireOperation(ManagerOperation.KILL);
 $departureBean.fireOperation(ManagerOperation.BALANCE_LOAD);
 System.out.println("Rate "+$departureBean.getValue()+" (Removing 1 workers)");
end

14

C1

M(C1)

C3

C4C2

M(C3)

C5'

M(C5')

C5''

M(C5'')

Cx = Component x

M(Cx) = Manager of Cx

Cx', Cx'' = Instances of Cx

Qos contract

(from users)

C5'

C6' C7' C8'

C6' C7' C8'

C6'' C7'' C8''

C1

C2 C4C3

C5''

C6'' C7'' C8''

Management

overlay network

Structural

relationships

Functional

network

Orchestration of managers (overlay)

15

Conclusion
❖ We introduced few component adaptation operations

✴ existing in GCM

✴ able to capture typical adaptation patterns of many grid apps

❖ We detail a semantics for these operations
✴ based on SHR

✴ suitable for the description of component concurrent
semantics and the run-time evolution of assemblies

❖ We discuss the appropriateness of the level of abstraction
chosen to describe adaptation operations
✴ to support the design of component-based applications and

their autonomic management

16

Future works

❖ Present work represent just a starting point
✴ establishing a common background with other communities

✴ understanding the feasibility of the approach

❖ Currently working at exploiting the formalisation for
✴ proving interesting properties ...

✴ setting up a framework to derive optimised adaptation
protocols
๏ for example let us consider adaptation overhead ...

17

new workers are mapped
on empty nodes

new workers are mapped on nodes already
running other instances of the same component

0

1,500

3,000

4,500

6,000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Analysis: Overheads (GCM/Proactive)

18

New Stop

O
ve

rh
ea

d
(m

s)

N. of workers

Analysis: Overhead (Alternative Impl)

19 19

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.
Dynamic reconfiguration of grid-aware applications in ASSIST.

Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

It is just C++ against Java?
❖ No, unfortunately it is not so simple ...

✴ dynamic class loading (red vs blue zone of the previous chart),
dynamic introspection, dynamic binding

✴ generic data serialisation, shared data alignment

✴ JIT, code factories, etc.

✴ non optimised protocols
๏ look-ahead resource recruiting, pre-deployment, atomic multicast

(replica management), consensus (reconf-safe-points)
๏ sequence of reconfiguration operations

• add + rebalance + move means:
stop-add-start-stop-rebalance-start-stop-move-start
for each involved component - 4 of them can be avoided

❖ I.e. we should find the right static-dynamic trade-off
20

Dynamically compiling adaptations

21

D1 D2 D3
source

designer specify adaptation
operation semantics at the

highest possible level

adapta adaptb

binary
operations are really
adaptation protocols

lifecycle, resource recruiting,
creation, binding, ...)

C1

D4
adaptc

C4

C
e.g.
JIT

C
e.g.
JIT

opt_adapt = C[adapta ; adaptb ; adaptc]

JIT
C
e.g.
JIT

C[adapta] C2

C
e.g.
JIT

C[adaptb] C3
C[adaptc]

we need it for the “env loop - outer AC loop” (see invited talk)
i.e. for dynamically introducing new contracts or adaptations

22

Thank you !

