
Autonomic QoS Control with Behavioral
Skeleton

Marco Aldinucci, Marco Danelutto, Sonia Campa
Computer Science Dept. - University of Pisa - Italy

Patrizio Dazzi, Nicola Tonellotto
ISTI - CNR - Pisa - Italy

GridCOMP WP3
21 Oct 2008 - Sophia Antipolis - France

GridCOMP conference ProActive/GCM user group

Grid programming with components:
an advanced COMPonent platform for an
effective invisible grid

© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

๏ Motivation
๏ why adaptive and autonomic management

๏ why skeletons fro high-level programming

๏ Behavioural Skeletons in GCM
๏ parametric composite component with management

๏ functional and non-functional description

๏ families of behavioural skeletons

๏ distributed overlay of management

๏ Demo

Outline

2

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Why Autonomic Computing

๏ Scientific and industrial applications do require QoS control

๏ QoS figures of a distributed application can hardly be predicted in
static way
• unstable platforms, irregular applications, dynamically changing requirements ...

๏ QoS is often contractually specified; infringement of it may be fined

๏ industry needs the dynamic sizing of applications (and their QoS) to
expand market share while keeping design and tuning cost limited
• design application once in a scalable way, sell it to many clients of different size

๏ QoS is a first-class concept of the emerging services/utility business
• cloud, SaaS, PaaS, etc.
• business/price may greatly depend by QoS, and vice-versa

3

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Why Autonomic Computing
(User-defined QoS requirements for Apps)

๏ Performance

๏ the app should sustain x transactions per second

๏ the app should complete each transaction in t seconds

๏ Security

๏ the link between P1 and P2 should be secured with k-strong
encryption

๏ the DB service is exposed by platform P3

๏ Fault-tolerance

๏ the parallel server should survive to the failure of y platforms

4

... then consider that x, t, P1, P2, P3, k, y can dynamically change as
may dynamically change the performance and the state of the
running environment ...

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Monitor Plan

Execute

Analyse
broken

contract

next
configuration

QoS data

๏ monitor: collect execution stats: machine load, service time, input/output queues
lengths, ...

๏ analyse: instantiate performance models with monitored data, detect broken contract,
in and in the case try to detect the cause of the problem

๏ plan: select a (predefined or user defined) strategy to re-convey the contract to
validity. The strategy is actually a “program” using execute API

๏ execute: leverage on mechanism to apply the plan

C1

C2

C3

C4

C5

C6

managed
components

manager

Autonomic Computing paradigm

5

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Why skeletons

๏ Management is difficult

๏ application change along time (ADL not enough)
• how “describe” functional, non-functional features?

๏ the low-level programming of component and its management is
simply too complex

๏ Component development is already too difficult

๏ how much of your time do you spend in run-time debugging and
performance tuning?

๏ Component reuse is already a problem

๏ specialising component yet more with management strategy would
just worsen the problem

๏ especially if the component should be reverse engineered to be used
(its behaviour may change along the run)

6

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Behavioural Skeletons idea

๏ Represent an evolution of the algorithmic skeleton
concept for component management

๏ abstract parametric paradigms of component assembly

๏ specialised to solve one or more management goals
• self-configuration/optimization/healing/protection.

๏ carry a semi-formal/formal description and an implementation
• they are higher-order components (or factories), actually

๏ Are higher-order components

๏ Are not exclusive

๏ can be composed with non-skeletal assemblies via standard
components connectors
• overcome a classic limitation of skeletal systems

7

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

๏ Functional Replication

๏ Farm/parameter sweep (self-optimization)

๏ Stateless Data-Parallel (self-configuring map-reduce)
• e.g. one server port (n of server ports is a parameter)

๏ Stateful Data-Parallel (self-configuring stateful map-reduce)
• e.g. two server ports: set_state and execute

๏ Active/Passive Replication (self-healing)

๏ Proxy

๏ Pipeline (coupled self-protecting proxies)

๏ Wrappers

Be-Skeletons families

8

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

ABC

Functional replication

9

W

W

W

W

W

W

1. Choose a schema
e.g. functional replication
ABC API is chosen accordingly

2. Choose an inner component
 compliant to BeSke constraints

3. Choose behaviour of ports
 e.g. unicast/from_any, scatter/gather

W

W

B/LC

S CS C

4. Run your application
 then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements
mechanisms)
AM = Autonomic Manager (implements policies)
B/LC = Binding + Lifecycle Controller

5. Automatise the process
 with a Manager

ABC

W

W

W

W

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Farm BeSke

10

W

BC

S CS C

AM

stream
unicast

stream
from_any

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

screen
output

mandel
broot

mandel
broot

mandel
broot

ABC

lines
gen S C

mandel
broot

mandel
broot

mandel
broot

farm

unicast from_any

get_service_time

change // degree

raise "contract violation"

new contract (e.g. Ts<k)

11

Farm BeSke (e.g. Mandelbrot)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Dicom demo: screen output

12

thumbnails
of processed

imagesimage
detail

manager activity
monitor & reaction

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

rule "CheckInterArrivalRate"
 salience 5
 when
 $arrivalBean : ArrivalRateBean(value < ManagersConstants.LOW_PERF_LEVEL)
 then
 $arrivalBean.setData(ManagersConstants.notEnoughTasks_VIOL);
 $arrivalBean.fireOperation(ManagerOperation.RAISE_VIOLATION);
 System.out.println("InterArrivalTime not enough - Raising a violation");
end
rule "CheckRateLow"
 when
 $departureBean : DepartureRateBean(value < ManagersConstants.LOW_PERF_LEVEL)
 $parDegree: NumWorkerBean(value <= ManagersConstants.MAX_NUM_WORKERS)
 then
 $departureBean.fireOperation(ManagerOperation.ADD_WORKER);
 $departureBean.fireOperation(ManagerOperation.BALANCE_LOAD);
 System.out.println("Adding "+ManagersConstants.ADD_WORKERS+ "workers");
end
rule "CheckRateHigh"
 when
 $departureBean : DepartureRateBean(value > ManagersConstants.HIGH_PERF_LEVEL)
 $parDegree: NumWorkerBean(value > ManagersConstants.MIN_NUM_WORKERS)
 then
 $departureBean.fireOperation(ManagerOperation.DEL_WORKER);
 $departureBean.fireOperation(ManagerOperation.BALANCE_LOAD);
 System.out.println("Rate "+$departureBean.getValue()+" (Removing 1 workers)");
end

13

Farm BeSke contract (e.g. Mandelbrot)

ABC

W

W

W

W

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Stateless Data Parallel BeSke

14

W

B/LC

S CS C

AM

clientn on L
n

clientb on L
b

clienta on L
a

W1 on L
1

W2 on L
2

AM on L
3

transient
StorageComp

DP

datasetComp
on L

a

fingerprint DB

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 15

RPC or dataflow bindings management bindings data sharing port bindings

1) references to DB slices are scattered

2) clients broadcast requests to all workers

3) each worker matches the fingerprint
 against its DB partition

4) clients get the answer OR(W1,W2,...)

6) AM may sense a changed answer time
(e.g. increased), due to a dataset

 size/kind and/or platform status change

clientn on L
n

clientb on L
b

clienta on L
a

W1 on L
1

W2 on L
2

AM on L
3

transient
StorageComp

DP

datasetComp
on L

a

fingerprint DB

W3 on L
3

7) AM reacts (e.g. increasing // degree):
copying W1;
bindings (external, AM, StorageComp)
should be preserved;
DB partitions (Wx state) should be
redistributed via StorageComp

5) repeat 2-3-4 ... 2-3-4 ...

Stateful Data Parallel BeSke (e.g. IBM mockup)

C1

M(C1)

C3

C4C2

M(C3)

C5'

M(C5')

C5''

M(C5'')

Cx = Component x

M(Cx) = Manager of Cx

Cx', Cx'' = Instances of Cx

Qos contract

(from users)

C5'

C6' C7' C8'

C6' C7' C8'

C6'' C7'' C8''

C1

C2 C4C3

C5''

C6'' C7'' C8''

Management

overlay network

Structural

relationships

Functional

network

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Overlay of Management

16

screen

output

mandel

broot

mandel

broot

mandel

broot

S C

mandel

dicom

dicom

farm

man

lines gen

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Overlay of management: motivation

17

1) push a QoS contract, e.g. low < Ts < high

2) run the application

3) suppose low > Ts

4) farm man react adding one
or more workers to increase
farm potential power

5) that is ok in many case, not always ...

6) if the farm is not receiving enough tasks the
reaction is simply wrong

Ts > low

Ts < high

screen

output

mandel

broot

mandel

broot

mandel

broot

S C

mandel

dicom

dicom

farm

man

APP

man

lines gen

with man

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Overlay of management: example

18

1) push a QoS contract, e.g. low < Ts < high

2) run the application

3) suppose low > Ts

4) farm man react as follows:
if Tarrival > low then add_w
else raiseup(not_enough_tasks)

5) man. now involve a global decision

6) as an example APP manager manager may ask
lines gen manager to increase the task rate

Ts > low

Ts < high

Ts > low

Ts < high

Ts > low

Ts < high

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Two tiers management demo (Mandelbrot)

19

demo

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

๏ Behavioural Skeletons in GCM

๏ templates with built-in management for the App designer

๏ methodology for the skeleton designer
• management can be changed/refined
• just prove your own management is correct against skeleton functional description

๏ can be freely mixed with standard GCM components
• because once instanced, they are standard

๏ Overlay of management
๏ relying on JBoss drools for manager policy

๏ now supporting distributed overlay of management
• e.g. hierarchical management

Conclusions

20

