
CoreGRID
Institute on Programming Model

CoreGRID Industrial showcase
Open Grid Forum

Barcelona, Spain
4-5 June, 2008

Programming Model
❖ GCM: a CoreGRID programming model and

methodology
❖ collecting partners experience

❖ UNIPI, INRIA, WWU, UNIPASSAU, VUA, QUB, UPC,
HRLS, ULisboa, USannio

❖ component based, supporting autonomic computing

❖ STREP spin-off project: GridCOMP
❖ GCM reference implementation demonstrate the

feasibility and sustainability of the approach

GCM
(coreGrid Component

C
F
1C
F
2C
F
3

CIN2

COUT

CIN1

CF CDB

M1

data/event
streams

service or
method

invocation

Manager Manager

QoS

SLA

management
events

QoS

SLA

user-defined
QoS contracts

App

Manager

DB1

DB2

GCM genesis and goals

❖ Designed within CoreGRID NoE (6th FP)
❖ Mainly within the Programming Model institute

❖ Currently being developed within GridCOMP STREP
(6th FP)

❖ Aimed at providing suitable tools for the efficient
development of component based GRID
applications.

GCM features

❖ Hierarchical components

❖ Collective communications and component
interaction patterns

❖ Autonomic management of notable parallel
composite components

❖ Advanced programming models

❖ Fractal based

Hierarchical components

C1

C3

C4C2

C5'

C5''

C6' C7' C8'

C6'' C7'' C8''

C5'

C6' C7' C8'

C1

C2 C4C3

C5''

C6'' C7'' C8''

Structural

relationships

Functional

network

W1

W2

W3

Serv

Collective interaction

Client
assembly

Adaptivity

P1 P6

P2 P5

P3 P4P3●P4

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Mandelbroot

9

demo

Autonomic
management

Autonomic Manager

Analyze Plan

 ExecuteMonitor Kwowledge

Autonomic Computing

Monitor Plan

Execute

Analyse
broken

contract

ne
xt

co
nfi

gu
rat

ion

QoS data

❖ monitor: collect execution stats: machine load, service time, input/output queues
lengths, ...

❖ analyse: instantiate performance models with monitored data, detect broken contract, in
and in the case try to detect the cause of the problem

❖ plan: select a (predefined or user defined) strategy to re-convey the contract to validity.
The strategy is actually a “program” using execute API

C1

C2

C3

C4

C5

C6

Managed components Manager

C1

M(C1)

C3

C4C2

M(C3)

C5'

M(C5')

C5''

M(C5'')

Cx = Component x

M(Cx) = Manager of Cx

Cx', Cx'' = Instances of Cx

Qos contract

(from users)

C5'

C6' C7' C8'

C6' C7' C8'

C6'' C7'' C8''

C1

C2 C4C3

C5''

C6'' C7'' C8''

Management

overlay network

Structural

relationships

Functional

network

Management Orchestration

Behavioural Skeletons

❖ Parametric assemblies of components
❖ higher-order

❖ equipped with a pre-defined adaptation API &
management strategy

❖ Behavioural skeletons abstract component self-
management in component-based design as design
patterns abstract class design in classic OO
development

screen

mandel

broot

mandel

broot

mandel

broot

ABC

file

input
S C

dicom

dicom

dicom

farm

Farm (e.g. Dicom)

unicast from_any

get_service_time

change // degree

raise "contract violation"

new contract (e.g. Ts<k)

Dicom Example

❖ Medical images analysis
❖ perform several kind of image segmentation to

highlight suspect spots in medical images

❖ sequential code developed by Pisa university clinic

❖ Parallelised with GCM by just plugging the
sequential code into a Behavioural Skeleton

demo

Progress

middleware

autonomic applications

component model
methodology

programming tools
NF & F features

naming
communication

deployment
sharing

monitoring API
reconfiguration API

passive BeSke

management policies
QoS contracts

manager engine

management co-ordination
mechanisms and policies

many open problems

component model features

adaptive components

autonomic components

now

area of interest

CoreGRID
kick-off 04

GridCOMP
kick-off 06

More demos
on demand

please ask us

...

...

...

site

manager
worker

worker

work

pool

manager

site

manager

worker

worker

work

pool

tasks

management service

ta
s
k
 e

x
e
c
u
ti
o
n
 s

e
rv

ic
e

Component, services or both?

❖ We re-defined and implemented
autonomic BeSke in SCA/Tuscany
❖ proof-of-concept implementation

❖ JBoss rule-based manager

❖ Few differences
❖ manager: JBoss rules vs POJO code

❖ protocols: standard XML/SOAP vs Proactive

❖ binding: static vs dynamic

❖ Proposal for standard extension
❖ dynamic binding of components

❖ Tuscany people shown interest

