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Programming Model
❖ GCM: a CoreGRID programming model and 

methodology
❖ collecting partners experience

❖ UNIPI, INRIA, WWU, UNIPASSAU, VUA, QUB, UPC, 
HRLS, ULisboa, USannio

❖ component based, supporting autonomic computing

❖ STREP spin-off project: GridCOMP 
❖ GCM reference implementation demonstrate the 

feasibility and sustainability of the approach
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GCM genesis and goals

❖ Designed within CoreGRID NoE (6th FP)
❖ Mainly within the Programming Model institute

❖ Currently being developed within GridCOMP STREP  
(6th FP)

❖  Aimed at providing suitable tools for the efficient 
development of component based GRID 
applications. 



GCM features

❖ Hierarchical components

❖ Collective communications and component 
interaction patterns

❖ Autonomic management of notable parallel 
composite components

❖ Advanced programming models 

❖ Fractal based
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Autonomic Computing 
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❖ monitor: collect execution stats: machine load, service time, input/output queues 
lengths, ...

❖ analyse: instantiate performance models with monitored data, detect broken contract, in 
and in the case try to detect the cause of the problem

❖ plan: select a (predefined or user defined) strategy to re-convey the contract to validity. 
The strategy is actually a “program” using execute API
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Behavioural Skeletons

❖ Parametric assemblies of components
❖ higher-order

❖ equipped with a pre-defined adaptation API & 
management strategy

❖ Behavioural skeletons abstract component self-
management in component-based design as design 
patterns abstract class design in classic OO 
development
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Dicom Example

❖ Medical images analysis
❖ perform several kind of image segmentation to 

highlight suspect spots in medical images

❖ sequential code developed by Pisa university clinic

❖ Parallelised with GCM by just plugging the 
sequential code into a Behavioural Skeleton
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Progress

middleware

autonomic applications

component model
methodology

programming tools
NF & F features

naming
communication

deployment
sharing

monitoring API
reconfiguration API

passive BeSke

management policies
QoS contracts

manager engine

management co-ordination
mechanisms and policies

many open problems

component model features

adaptive components

autonomic components

now

area of interest
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More demos 
on demand 

please ask us
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Component, services or both?

❖ We re-defined and implemented 
autonomic BeSke in SCA/Tuscany
❖ proof-of-concept implementation

❖ JBoss rule-based manager

❖ Few differences
❖ manager: JBoss rules vs POJO code

❖ protocols: standard XML/SOAP vs Proactive

❖ binding: static vs dynamic

❖ Proposal for standard extension
❖ dynamic binding of components

❖ Tuscany people shown interest


