
Efficient streaming applications on
multi-core with FastFlow: the

biosequence alignment test-bed
Marco Aldinucci

Computer Science Dept. - University of Torino - Italy

Marco Danelutto, Massimiliano Meneghin, Massimo Torquti
Computer Science Dept. - University of Pisa - Italy

Peter Kilpatrick
Computer Science Dept. - Queen’s University Belfast - U.K.

ParCo 2009 - Sep. 1st - Lyon - France

BioBits

BioBits

Outline
Motivation

Commodity architecture evolution
Efficiency for fine-grained computation
POSIX thread evaluation

FastFlow
Architecture
Implementation

Experimental results
Micro-benchmarks
Real-world App: the Smith-Waterman sequence alignment application

Conclusion, future works, and surprise dessert (before lunch)
2

[< 2004] Shared Font-Side Bus
(Centralized Snooping)

[< 2004] Shared Font-Side Bus
(Centralized Snooping)

[2005] Dual Independent Buses
(Centralized Snooping)

[2005] Dual Independent Buses
(Centralized Snooping)

[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)

[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)

[2009] QuickPath
(MESI-F Directory Coherence)

[2009] QuickPath
(MESI-F Directory Coherence)

BioBits

This and next generation SCM

Exploit cache coherence
and it is likely to happens also in the next future

Memory fences are expensive
Increasing core count will make it worse
Atomic operations does not solve the problem (still fences)

Fine-grained parallelism is off-limits
I/O bound problems, High-throughput, Streaming, Irregular DP problems
Automatic and assisted parallelization

Micro-benchmarks: farm of tasks

void Emitter () {
for (i =0; i <streamLen;++i){
task = create_task ();
queue=SELECT_WORKER_QUEUE();
queue −>PUSH(task);

}
}

void Worker() {
while (!end_of_stream){
myqueue −>POP(&task);
do_work(task) ;
}

}

int main () {
spawn_thread(Emitter) ;
for (i =0; i <nworkers;++i){
spawn_thread(Worker);

}
wait_end () ;

}

E C

W
1

W
2

W
n

Used to implement: parameter sweeping, master-worker, etc.

BioBits

Using POSIX lock/unlock queues

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

BioBits

Using POSIX lock/unlock queues

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

BioBits

Using CompareAndSwap queues

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

BioBits

Using CompareAndSwap queues

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

BioBits

Evaluation

Poor performance for fine-grained computations
Memory fences seriously affect the performance

BioBits

What about avoiding fences in SCM?

Highly-level semantics matters!
DP paradigms entail data bidirectional data exchange among cores

Cache reconciliation can be made faster but not avoided

Task Parallel, Streaming, Systolic usually result in a one-way data flow
Is cache coherency really strictly needed?

Well described by a data flowing graphs (streaming networks)

BioBits

Streaming Networks

A Streaming Network can be easily build
POSIX (or other) threads
Asynchronous channels
But exploiting a global address space

Threads can still share the memory using locks

Asynchronous channels
Thread lifecycle control + FIFO Queue

Queue: Single Producer Single Consumer (SPSC), Single Producer Multiple Consumer (SPMC),
Multiple Producer Single Consumer (MPSC), Multiple Producer Multiple Consumer (MPMC)

Lifecycle: ready - active waiting (yield + over-provisioning)

SPSC

MPMC

SPMC

MCSP

BioBits

Queues: state of the art

MPMC
Dozen of “lock-free” (and wait-free) proposal
The quality is usually measured with number of atomic operations (CAS)

CAS ≥ 1

SPSC
lock-free, fence-free

J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue. PPoPP 2008. ACM.

Supports Total Store Order OOO architectures (e.g. Intel Core)

Active waiting. Use OS as less as possible.

Native SPMC and MPSC
see MPMC

BioBits

SPMC and MCSP via SPSC + control
SPMC(x) fence-free queue wit x consumers

One SPSC “input” queue and x SPSC “output” queues
One flow of control (thread) dispatch items from input to outputs

MPSC(y) fence-free queue with y producers
One SPSC “output” queue and y SPSC “input” queues
One flow of control (thread) gather items from inputs to output

x and y can be dynamically changed
MPMC = MCSP + SPMC

Just juxtapose the two parametric networks

E

C

BioBits

FastFlow: A step forward
Implements lock-free SPSC, SPMC, MPSC, MPMC queues

Exploiting streaming networks
Features can be composed as parametric streaming networks (graphs)

E.g. an optimized memory allocator can be added by fusing the allocator graphs with the application graphs

Not described here

Features are represented as skeletons, actually which compilation target are streaming networks

C++ STL-like implementation
Can be used as a low-level library
Can be used to generatively compile skeletons into streaming networks

Blazing fast on fine-grained computations

BioBits

Very fine grain (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

BioBits

Very fine grain (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

BioBits

Fine grain (5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

BioBits

Fine grain (5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

BioBits

Medium grain (50 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

BioBits

Medium grain (50 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

BioBits

Biosequence alignment

Smith-Waterman algorithm
Local alignment
Time and space demanding O(mn), often replaced by approximated BLAST
Dynamic programming
Real-world application

It has been accelerated by using FPGA, GCPU (CUDA), SSE2/x86, IBM Cell

Best software implementation
SWPS3: evolution of Farrar’s implementation

SSE2 + POSIX IPC

Smith-Waterman algorithm
Local alignment - dynamic programming - O(nm)

Experiment parameters
Affine Gap Penalty: 10-2k, 5-2k, ...

Substitution Matrix: BLOSUM50

•Substitution Matrix: describes the rate at which one character in a sequence changes to
other character states over time

•Gap Penalty: describes the costs of gaps, possibly as function of gap length

BioBits

Biosequence testbed

Each query sequence (protein) is
aligned against the whole
protein DB

E.g. Compare unknown sequence against a
DB of known sequences

SWPS3 implementation exploits
POSIX processes and pipes

Faster than POSIX threads + locks

SW1

SW2

SWn

UniProtKB
Swiss-Prot

471472 sequences
167326533 amino-acids

Query
Sequences

Results

Threads or Processes or ...

Shared memory
(read-only)

BioBits

Smith Waterman (10-2k gap penalty)

0

10

20

30

40

144 189 246 464 553 1000 2005 3005 4061 22152

GC
PU

S (
the

 hi
gh

er
the

 be
tte

r)

Query sequence lenght

SWPS3 FastFlow

BioBits

Smith Waterman (5-2k gap penalty)

0

5

10

15

20

144 189 246 464 553 1000 2005 3005 4061 22152

GC
PU

S (
the

 hi
gh

er
the

 be
tte

r)

Query sequence lenght

SWPS3 FastFlow

BioBits

Conclusions

FastFlow support efficiently streaming applications on
commodity SCM (e.g. Intel core architecture)

More efficiently than POSIX threads (standard or CAS lock)

Smith Waterman algorithm with FastFlow
Obtained from SWPS3 by syntactically substituting read and write on POSIX
pipes with fastflow push and FastFlow pop an push

In turn, POSIX pipes are faster than POSIX threads + locks in this case

Scores twice the speed of best known parallel implementation (SWPS3) on the
same hardware (Intel 2 x Quad-core 2.5 GHz)

BioBits

Future Work
FastFlow

Is open source (STL-like C++ library will be released soon) [✔]
Contact me if you interested

Include a specialized (very fast) parallel memory allocator [✔]

Can be used to automatically parallelize a wide class of problems []
Since it efficiently supports fine grain computations

Can be used as compilation target for skeletons []
Support parametric parallelism schemas and support compositionality (can be formalized as graph rewriting)

Can be extended for CC-NUMA architectures []
Can be used to extend Intel TBB and OpenMP [✔]

Increasing the performances of those tools

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

P02232

P01111

P05013

P14942

P00762

P07327

P01008

P10635

P25705

P03435

P27895

P07756

P04775

P19096

P28167

P0C
6B8

P20930

Q
9U

KN
1

Q
8W

XI7

14
4

18
9

18
9

22
2

24
6

37
5

46
4

49
7

55
3

56
7

10
00

15
00

20
05

25
04

30
05

35
64

40
61

54
78

22
15

2

G
C

U
P

S

Query sequence (protein)

5-2k gap penalty

Query sequence length (protein length)

FastFlow
OpenMP

Cilk
TBB

SWPS3

FastFlow is also faster than Open MP, Intel TBB and Cilk
(at least for streaming on Intel 2 x quad-core)

THANK YOU!
QUESTIONS?

... and one question for you

Are those chips really build for parallel computing?

