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This and next generation SCM

Exploit cache coherence
and it is likely to happens also in the next future

Memory fences are expensive
Increasing core count will make it worse
Atomic operations does not solve the problem (still fences)

Fine-grained parallelism is off-limits
I/O bound problems, High-throughput, Streaming, Irregular DP problems
Automatic and assisted parallelization



Micro-benchmarks: farm of tasks

void Emitter () { 
for ( i =0; i <streamLen;++i){ 
task = create_task (); 
queue=SELECT_WORKER_QUEUE(); 
queue −>PUSH(task); 

} 
} 

void Worker() { 
while (!end_of_stream){ 
myqueue −>POP(&task); 
do_work(task) ; 
} 

} 

int main () { 
spawn_thread( Emitter ) ; 
for ( i =0; i <nworkers;++i){ 
spawn_thread(Worker); 

} 
wait_end () ; 

} 
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Used to implement: parameter sweeping, master-worker, etc.
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Using POSIX lock/unlock queues
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Using POSIX lock/unlock queues
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Using CompareAndSwap queues
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Using CompareAndSwap queues
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Evaluation

Poor performance for fine-grained computations
Memory fences seriously affect the performance
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What about avoiding fences in SCM?

Highly-level semantics matters!
DP paradigms entail data bidirectional data exchange among cores

Cache reconciliation can be made faster but not avoided

Task Parallel, Streaming, Systolic usually result in a one-way data flow
Is cache coherency really strictly needed?

Well described by a data flowing graphs (streaming networks)
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Streaming Networks

A Streaming Network can be easily build
POSIX (or other) threads
Asynchronous channels
But exploiting a global address space

Threads can still share the memory using locks

Asynchronous channels 
Thread lifecycle control + FIFO Queue

Queue: Single Producer Single Consumer (SPSC), Single Producer Multiple Consumer (SPMC), 
Multiple Producer Single Consumer (MPSC), Multiple Producer Multiple Consumer (MPMC)

Lifecycle: ready - active waiting (yield + over-provisioning)

SPSC

MPMC

SPMC

MCSP
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Queues: state of the art

MPMC
Dozen of “lock-free” (and wait-free) proposal
The quality is usually measured with number of atomic operations (CAS)

CAS ≥ 1

SPSC
lock-free, fence-free

J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for efficient pipeline parallelism: a cache-optimized concurrent lock-free 
queue. PPoPP 2008. ACM. 

Supports Total Store Order OOO architectures (e.g. Intel Core) 

Active waiting. Use OS as less as possible.

Native SPMC and MPSC
see MPMC 
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SPMC and MCSP via SPSC + control
SPMC(x) fence-free queue wit x consumers

One SPSC “input” queue and x SPSC “output” queues
One flow of control (thread) dispatch items from input to outputs

MPSC(y) fence-free queue with y producers
One SPSC “output” queue and y SPSC “input” queues
One flow of control (thread) gather items from inputs to output

x and y can be dynamically changed
MPMC = MCSP + SPMC

Just juxtapose the two parametric networks

E

C
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FastFlow: A step forward
Implements lock-free SPSC, SPMC, MPSC, MPMC queues

Exploiting streaming networks
Features can be composed as parametric streaming networks (graphs)

E.g. an optimized memory allocator can be added by fusing the allocator graphs with the application graphs

Not described here

Features are represented as skeletons, actually which compilation target are streaming networks

C++ STL-like implementation
Can be used as a low-level library
Can be used to generatively compile skeletons into streaming networks

Blazing fast on fine-grained computations
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Very fine grain (0.5 μS)
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Very fine grain (0.5 μS)
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Fine grain (5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n



BioBits

Fine grain (5 μS)
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Medium grain (50 μS)
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Medium grain (50 μS)
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Biosequence alignment

Smith-Waterman algorithm
Local alignment
Time and space demanding O(mn), often replaced by approximated BLAST
Dynamic programming
Real-world application

It has been accelerated by using FPGA, GCPU (CUDA), SSE2/x86, IBM Cell

Best software implementation
SWPS3: evolution of Farrar’s implementation

SSE2 + POSIX IPC



Smith-Waterman algorithm
Local alignment - dynamic programming - O(nm)



Experiment parameters
Affine Gap Penalty: 10-2k, 5-2k, ...

Substitution Matrix: BLOSUM50

•Substitution Matrix: describes the rate at which one character in a sequence changes to 
other character states over time  

•Gap Penalty: describes the costs of gaps, possibly as function of gap length 
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Biosequence testbed

Each query sequence (protein) is 
aligned against the whole 
protein DB

E.g. Compare unknown sequence against a 
DB of known sequences

SWPS3 implementation exploits 
POSIX processes and pipes

Faster than POSIX threads + locks 

SW1

SW2

SWn

UniProtKB
Swiss-Prot

471472 sequences 
167326533 amino-acids 

Query
Sequences

Results

Threads or Processes or ...

Shared memory
(read-only)
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Smith Waterman (10-2k gap penalty)
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Smith Waterman (5-2k gap penalty)
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Conclusions

FastFlow support efficiently streaming applications on 
commodity SCM (e.g. Intel core architecture)

More efficiently than POSIX threads (standard or CAS lock)

Smith Waterman algorithm with FastFlow
Obtained from SWPS3 by syntactically substituting read and write on POSIX 
pipes with fastflow push and FastFlow pop an push

In turn, POSIX pipes are faster than POSIX threads + locks in this case

Scores twice the speed of best known parallel implementation (SWPS3) on the 
same hardware (Intel 2 x Quad-core 2.5 GHz)
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Future Work
FastFlow

Is open source (STL-like C++ library will be released soon) [✔]
Contact me if you interested

Include a specialized (very fast) parallel memory allocator [✔]

Can be used to automatically parallelize a wide class of problems [  ]
Since it efficiently supports fine grain computations

Can be used as compilation target for skeletons [  ]
Support parametric parallelism schemas and support compositionality  (can be formalized as graph rewriting)

Can be extended for CC-NUMA architectures [  ]
Can be used to extend Intel TBB and OpenMP [✔]

Increasing the performances of those tools
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Query sequence (protein)

5-2k gap penalty

Query sequence length (protein length)

FastFlow
OpenMP

Cilk
TBB

SWPS3

FastFlow is also faster than Open MP, Intel TBB and Cilk
(at least for streaming on Intel 2 x quad-core)





THANK YOU!
QUESTIONS?

... and one question for you

Are those chips really build for parallel computing?


