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Outline
A semi-formal framework for autonomic components

rigorously defining autonomic cycle

rigorously defining managers behaviour

Behavioural skeletons and component hierarchy
decoupling management from business code, coupling 
behaviour with skeletons/patterns

easing autonomic applications design by way of automatic 
manager generation

Demo*nstrating all above
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ON INTRODUCING A  SEMI-FORMAL 
FRAMEWORK FOR AUTONOMIC 

COMPONENTS
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Autonomic Components
CoreGRID Grid Component Model (GCM)

recently standardised by ETSI (July 2008)
not only grid, but also distributed and multi/may core

GCM
use-provide ports, RPC, events, streams
broadcast, multicast, unicast, gather ports
hierarchic: components can be nested, derived from Fractal 
component model, which don’t cover concurrency/parallelism
prototypal implementation (GCM/Proactive)

autonomic features designed and developed in GridCOMP
already used for real world application, see IBM, GridSystem, ATOS, ...
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Autonomic Components
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AC - Components in Insulation

They are components
unit of deployment, legacy code, well-defined dependencies, 
XML-style assembly, etc.

Autonomic Components exhibit self-* features
self-optimising, self-configuring self-protecting, self-healing

They can have one or more managers
we assumed one, since components can be nested the 
assumption does not break generality
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Assembly of Autonomic Components

Component interaction
Legacy (Cl) no interaction, empty manager, no NF ports

Passive (Cp) one-way interaction, monitor only capability, 
read-only NF ports 

Active (Ca) two-ways interactions, monitor and steering 
capability, read/write NF ports

“less general” components can be nested into “more 
general” components, but not vice-versa

Cl ⊂ Cp ⊂ Ca
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Assembly of Autonomic Components
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Hierarchy of Autonomic Components
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Hierarchy of Autonomic Components
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Manager Monitor + Analyse
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!!!
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}
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m1(!t) mn(!t)
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(
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1 ≤ khigh

)
∧m2

1 ≤ θ

Valid
t = t + 1 

Broken contract
goto planning phase

Wednesday, February 18, 2009



The manager choses a plan among defined ones
including the empty plan, i.e. better to do nothing

A plan is composed of
1. A reconfiguration protocols (composed of actions)

migrate C1 on Platform2; clone C2 and wire it to C1; 
actions can also consist in communications with other managers

2. Expected benefit and overhead
quantified as alteration of monitor variables at some future iteration  
e.g. increase throughput using more resources

Plan+Execute (reconfigure) 1/2

m0(!t+3) = g(m1(!t),m2(!t)),m1(!t+3) = f(m2(!t))

mi(!t+k)
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Plan+Execute (reconfigure) 2/2
Which is the better plan?

The one that gives the best expected  benefit - cost
according to a give logic

we used first-order logic, but other are viable (e.g. fuzzy)
possibly after projecting the n-space of results onto a user-defined goal 
function

Is there any guarantee that everything will work as expected
No. It is a speculation, but

It is control loop theory from the mid of last century
We can reach a good sub-optimum by iterating the process

this reduces the forecast window

this take in account changing enviroment
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 ON WHY PROGRAMMING AC IS 
NEARLY A NIGHTMARE 

... AND WHY WE INTRODUCED
BEHAVIOURAL SKELETONS 
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Management is Hard to Express 1/3

AC idea is basically a vision 
the definition “per se” does not helps so much in designing 
self-management applications

writing a manager is pretty complex
should be decoupled and independent from functional code
should preserve semantics of functional code
should provide effective management capabilities

when applied to components it may specialise them too 
much 

loosing reusability, that is one of key advantages of components
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Management is Hard to Express 2/3
Expressing managers might be complex

User goals are often multi-purpose
Performance: the app should sustain x transactions per second; the 
app should complete each transaction in t seconds
Security: the link between P1 and P2 should be secured with k-
strong encryption; the DB service is exposed by platform P3
Fault-tolerance: the parallel server should survive to the failure of y 
platforms

User wishes are referred to a dynamic world
... consider that x, t, P1, P2, P3, k, y can dynamically change as may 
dynamically change the performance and the state of the running 
environment 
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Management is Hard to Express 3/3
Ideal application management is distributed

but user wishes (goal/contracts) are atomically expressed
user would not specify how each part of the (evolving) system 
contribute to their wishes, and how parts compose w.r.t. goal

The framework previously presented attacks the problem
gives you a well-defined methodology 

monitor can be collected bottom-up, steering proceed top-down, 
management happens finding the minimum common ancestor in a 
tree of autonomic components

but does not solve the problems in all cases
what happens if the application is composed of two parts user 
wishes cannot be automatically split in two parts?
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Behavioural Skeletons (BeSke)
Represent an evolution of the algorithmic skeleton concept for 
component management

abstract parametric paradigms of component assembly

specialised to solve one or more management goals
self-configuration/optimization/healing/protection. 

carry a semi-formal/formal description and an implementation 
they are component factories, actually

Are higher-order components

Are not exclusive
can be composed with non-skeletal assemblies via standard 
components connectors

overcome a classic limitation of skeletal systems

Wednesday, February 18, 2009



Managers Interaction is Well-defined
Can be formally specified, e.g. using Orc (Cook & Misra)

BSkel(farm(N), contract) !
farm(N) | manager(farm(N), contract)

farm(N) ! (| 1 ≤ i ≤ N : Wi)

Wi !
( if(b) " (Wi execute(x) >y> out.put(y) " Wi)
| if(¬b) " 0)

where (x, b) :∈
( in.get >y> let(y, true)
| Interrupti.get >y> let(y, false))

adapt(farm(N), plan) !
(if(plan = addworker) " let(y) " farm(N + 1)

where (∀i :: yi :∈ Interrupti.set)
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ABC

W

W

W

W

W

W

1. Choose a schema 
e.g. functional replication
ABC API is chosen accordingly

2. Choose an inner component
compliant to BeSke constraints

3. Choose behaviour of ports
e.g. unicast/from_any, scatter/gather

W

W

B/LC

S CS C

4.Run your application
then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements 
mechanisms)

AM = Autonomic Manager (implements policies)
B/LC = Binding + Lifecycle Controller 

5. Automatise the process
with a Manager

Functional Replication
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BeSke families
Functional Replication

Farm/parameter sweep (self-optimization)

Stateful Data-Parallel (self-configuring map-reduce)

Active/Passive Replication (self-healing)

Proxy
Pipeline (coupled self-protecting proxies)

Wrappers
Facade (self-protection)

Many others can be borrowed from Design Patterns
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Why BeSke are an Advance
We can associate a standard manager to each BeSke

contracts can be predefined, implementation can be 
automatically generated (by way of a factory)

BeSke are compositional
when nested we can automatically derive the global behaviour of 
the assembly that is managed in fully distributed way

they can be wired in arbitrary graphs 
in this way the previous property is not always true

A prototypal implementation exists (GPL)
download from my home page http://www.di.unipi.it/~aldinuc

managers implemented as JBoss engines, see references
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Managers and Contracts
Component Type Manager Contract mi

C1 active pipe Klow ≤ Tself ≤ Khigh

(user defined)
Klow,Khigh constants;

TC2
, TC3

, TC4
monitored

Tself = max{TC2
, TC3

, TC4
} [ ↑ ]

CPC2
= CP; CPC3

= CP; CPC4
=

CP [ ↓ ]

C3 active farm (CPsuper) ∧ (ITself ≤ Tself)
(derived)

ITself = request inter-arrival time; nself =
#workers

let Cj children of C3, 1 ≤ j ≤ nself : TCj

monitored

Tself =
∑

j=1..nself
TCj

/n2
self ; [ ↑ ]

CPCj
= optimise(TCj

); [ ↓ ]

C5 active pipe CPsuper (derived) TC6
, TC7

, TC8
monitored

Tself = max{TC6
, TC7

, TC8
}; [ ↑ ]

CP6 = null; CP7 = null; CP8 = null; [ ↓ ]

C2,4,6,7,8 passive seq none provide TC2,4,6,7,8
via NF port (respectively)
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Plan Expected Cost Expected Benefit

PLf1 move the slower
worker Cw to a
faster platform, if
any

cost(stop(Cw);
deploy(Cw);
start(Cw))

decrease service time. Tfarm(!t+h) = δTCw
(!t),

0 ≤ δ ≤ 1 speed difference between the platforms

PLf2 increase parallelism
degree (allocate k
new workers)

cost(deploy(Cwj );
start(Cwj )) for
j = 1..k instances

decrease service time. Tfarm(!t+h) = δTfarm(!t)
δ = n/(n + k)

PLf3 decrease parallelism
degree (de-allocate k
workers)

cost(stop(Cwj ))
for j = 1..k
instances

increase service time. Tfarm(!t+h) = δTfarm(!t)
δ = (n + k)/n

PLf4 raise violation 0 (negligible) none

PLp1 move stage (Cs)
with maximum T to
a faster resource, if
any

cost(stop(Cs);
deploy(Cs);
start(Cs))

decrease service time. Tpipe(!t+h)
= δTpipe(!t), 0 ≤ δ ≤ 1 speed
difference between the platforms if
max{TCS , Tpipe(C1, . . . , Cs−1, Cs+1, . . . , Ck} =
TCS , otherwise δ = 1

PLp2 collapse adjacent
stages Cs, Cs+1

cost(stop(Cs);
deploy(Cs);
start(Cs)) for Cs

and Cs+1

decrease resource usage n = n−1. increase service
time. Tpipe(!t+h) = δ+Tpipe(!t), δ = 0 iff TCs+
TCs+1 ≤ Tpipe(!t), δ = TCs + TCs+1 − Tpipe(!t)
otherwise

PLp3 raise violation 0 (negligible) none
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DEMO
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We have outlined a framework suitable for  modelling 
hierarchical autonomic management

not only for grid: clouds, distributed , multi/many core, ...
We enriched the  framework with behavioural skeletons

previously existing only “in insulation”
contracts and manager implementation can be automatically 
generated also in case of composition

We implemented (GCM); we got a ETSI standard
we show with a demo they are effective

                         has been elected in Jan 2009 “EC ITC project 
of the month”

Conclusions
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THANK YOU
Questions?
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