
Marco Aldinucci
Computer Science Dept. - University of Torino - ITALY

Marco Danelutto
Computer Science Dept. - University of Pisa - ITALY

Peter Kilpatrick
Computer Science Dept. - Queen’s University Belfast - U.K.

TOWARDS HIERARCHICAL MANAGEMENT OF
AUTONOMIC COMPONENTS: A CASE STUDY

Euromicro PDP 2009, 18-21 Feb, Weimar, Germany

Wednesday, February 18, 2009

Outline
A semi-formal framework for autonomic components

rigorously defining autonomic cycle

rigorously defining managers behaviour

Behavioural skeletons and component hierarchy
decoupling management from business code, coupling
behaviour with skeletons/patterns

easing autonomic applications design by way of automatic
manager generation

Demo*nstrating all above

Wednesday, February 18, 2009

ON INTRODUCING A SEMI-FORMAL
FRAMEWORK FOR AUTONOMIC

COMPONENTS

Wednesday, February 18, 2009

Autonomic Components
CoreGRID Grid Component Model (GCM)

recently standardised by ETSI (July 2008)
not only grid, but also distributed and multi/may core

GCM
use-provide ports, RPC, events, streams
broadcast, multicast, unicast, gather ports
hierarchic: components can be nested, derived from Fractal
component model, which don’t cover concurrency/parallelism
prototypal implementation (GCM/Proactive)

autonomic features designed and developed in GridCOMP
already used for real world application, see IBM, GridSystem, ATOS, ...

Wednesday, February 18, 2009

Autonomic Components

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

Analyse
Is the contract

broken? Why?

QoS

contract

Plan
Which plan can

solve the problem?

Monitor
How is AE

behaving?

Adapt
Execute the reconf.

protocol

Sensors Effectors

Manager

Wednesday, February 18, 2009

Autonomic Components

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

Managed
Elements

Analyse
Is the contract

broken? Why?

QoS

contract

Plan
Which plan can

solve the problem?

Monitor
How is AE

behaving?

Adapt
Execute the reconf.

protocol

Sensors Effectors

Manager life cycle

Wednesday, February 18, 2009

Autonomic Components

Analyse
Is the contract

broken? Why?

QoS

contract

Plan
Which plan can

solve the problem?

Monitor
How is AE

behaving?

Adapt
Execute the reconf.

protocol

Sensors Effectors

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

E1

Manager

E2 AE1

E3 AE2

AEa

Autonomic Element

Wednesday, February 18, 2009

AC - Components in Insulation

They are components
unit of deployment, legacy code, well-defined dependencies,
XML-style assembly, etc.

Autonomic Components exhibit self-* features
self-optimising, self-configuring self-protecting, self-healing

They can have one or more managers
we assumed one, since components can be nested the
assumption does not break generality

Wednesday, February 18, 2009

Assembly of Autonomic Components

Component interaction
Legacy (Cl) no interaction, empty manager, no NF ports

Passive (Cp) one-way interaction, monitor only capability,
read-only NF ports

Active (Ca) two-ways interactions, monitor and steering
capability, read/write NF ports

“less general” components can be nested into “more
general” components, but not vice-versa

Cl ⊂ Cp ⊂ Ca

Wednesday, February 18, 2009

Assembly of Autonomic Components

E1

Manager

Manager

E2 E3

E1

Manager

E2E1

Manager

E2

E1

Manager

Manager

E2 E3

Manager

Management
overlay I

Management
overlay II

Wednesday, February 18, 2009

Hierarchy of Autonomic Components

E1

Manager

Manager

E2 E3

E1

Manager

E2E1

Manager

E2 E1

Manager

Manager

E2 E3

Manager

Wednesday, February 18, 2009

Hierarchy of Autonomic Components

E1

Manager

Manager E1

Manager

E2E1

Manager

E2 E1

Manager

Manager

Manager

E2 E3E2 E3

Monitor data (polls/events)
can be synthesised
(bottom-up)

Steering actions and new
contracts can be

diffused (top-down)

Monitor data is analysed
Management actions are planned

Monitor
Analysis
Planning
Steering

Monitor
Analysis
Planning
Steering

Wednesday, February 18, 2009

C1

M(C1)

C3

C4C2

M(C3)

C5'

M(C5')

C5''

M(C5'')

Cx = Component x

M(Cx) = Manager of Cx

Cx', Cx'' = Instances of Cx

Qos contract

(from users)

C5'

C6' C7' C8'

C6' C7' C8'

C6'' C7'' C8''

C1

C2 C4C3

C5''

C6'' C7'' C8''

Management

overlay network

Structural

relationships

Functional

network

Overlay of managers

Wednesday, February 18, 2009

Manager Monitor + Analyse

MC

MC1

!{
m1

1, . . . ,m1
j1

}
!t

!!!

MCn

!{
mn

1, . . . ,mn
jn

}
!t

MC

MC1 MCn

m1(!t) mn(!t)

ContractPredicate(m1, . . . ,mn)

e.g.
(
klow ≤ m1

1 ≤ khigh

)
∧m2

1 ≤ θ

Valid
t = t + 1

Broken contract
goto planning phase

Wednesday, February 18, 2009

The manager choses a plan among defined ones
including the empty plan, i.e. better to do nothing

A plan is composed of
1. A reconfiguration protocols (composed of actions)

migrate C1 on Platform2; clone C2 and wire it to C1;
actions can also consist in communications with other managers

2. Expected benefit and overhead
quantified as alteration of monitor variables at some future iteration
e.g. increase throughput using more resources

Plan+Execute (reconfigure) 1/2

m0(!t+3) = g(m1(!t),m2(!t)),m1(!t+3) = f(m2(!t))

mi(!t+k)

Wednesday, February 18, 2009

Plan+Execute (reconfigure) 2/2
Which is the better plan?

The one that gives the best expected benefit - cost
according to a give logic

we used first-order logic, but other are viable (e.g. fuzzy)
possibly after projecting the n-space of results onto a user-defined goal
function

Is there any guarantee that everything will work as expected
No. It is a speculation, but

It is control loop theory from the mid of last century
We can reach a good sub-optimum by iterating the process

this reduces the forecast window

this take in account changing enviroment

Wednesday, February 18, 2009

 ON WHY PROGRAMMING AC IS
NEARLY A NIGHTMARE

... AND WHY WE INTRODUCED
BEHAVIOURAL SKELETONS

Wednesday, February 18, 2009

Management is Hard to Express 1/3

AC idea is basically a vision
the definition “per se” does not helps so much in designing
self-management applications

writing a manager is pretty complex
should be decoupled and independent from functional code
should preserve semantics of functional code
should provide effective management capabilities

when applied to components it may specialise them too
much

loosing reusability, that is one of key advantages of components

Wednesday, February 18, 2009

Management is Hard to Express 2/3
Expressing managers might be complex

User goals are often multi-purpose
Performance: the app should sustain x transactions per second; the
app should complete each transaction in t seconds
Security: the link between P1 and P2 should be secured with k-
strong encryption; the DB service is exposed by platform P3
Fault-tolerance: the parallel server should survive to the failure of y
platforms

User wishes are referred to a dynamic world
... consider that x, t, P1, P2, P3, k, y can dynamically change as may
dynamically change the performance and the state of the running
environment

Wednesday, February 18, 2009

Management is Hard to Express 3/3
Ideal application management is distributed

but user wishes (goal/contracts) are atomically expressed
user would not specify how each part of the (evolving) system
contribute to their wishes, and how parts compose w.r.t. goal

The framework previously presented attacks the problem
gives you a well-defined methodology

monitor can be collected bottom-up, steering proceed top-down,
management happens finding the minimum common ancestor in a
tree of autonomic components

but does not solve the problems in all cases
what happens if the application is composed of two parts user
wishes cannot be automatically split in two parts?

Wednesday, February 18, 2009

Behavioural Skeletons (BeSke)
Represent an evolution of the algorithmic skeleton concept for
component management

abstract parametric paradigms of component assembly

specialised to solve one or more management goals
self-configuration/optimization/healing/protection.

carry a semi-formal/formal description and an implementation
they are component factories, actually

Are higher-order components

Are not exclusive
can be composed with non-skeletal assemblies via standard
components connectors

overcome a classic limitation of skeletal systems

Wednesday, February 18, 2009

Managers Interaction is Well-defined
Can be formally specified, e.g. using Orc (Cook & Misra)

BSkel(farm(N), contract) !
farm(N) | manager(farm(N), contract)

farm(N) ! (| 1 ≤ i ≤ N : Wi)

Wi !
(if(b) " (Wi execute(x) >y> out.put(y) " Wi)
| if(¬b) " 0)

where (x, b) :∈
(in.get >y> let(y, true)
| Interrupti.get >y> let(y, false))

adapt(farm(N), plan) !
(if(plan = addworker) " let(y) " farm(N + 1)

where (∀i :: yi :∈ Interrupti.set)

Wednesday, February 18, 2009

ABC

W

W

W

W

W

W

1. Choose a schema
e.g. functional replication
ABC API is chosen accordingly

2. Choose an inner component
compliant to BeSke constraints

3. Choose behaviour of ports
e.g. unicast/from_any, scatter/gather

W

W

B/LC

S CS C

4.Run your application
then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements
mechanisms)

AM = Autonomic Manager (implements policies)
B/LC = Binding + Lifecycle Controller

5. Automatise the process
with a Manager

Functional Replication

Wednesday, February 18, 2009

BeSke families
Functional Replication

Farm/parameter sweep (self-optimization)

Stateful Data-Parallel (self-configuring map-reduce)

Active/Passive Replication (self-healing)

Proxy
Pipeline (coupled self-protecting proxies)

Wrappers
Facade (self-protection)

Many others can be borrowed from Design Patterns

Wednesday, February 18, 2009

Why BeSke are an Advance
We can associate a standard manager to each BeSke

contracts can be predefined, implementation can be
automatically generated (by way of a factory)

BeSke are compositional
when nested we can automatically derive the global behaviour of
the assembly that is managed in fully distributed way

they can be wired in arbitrary graphs
in this way the previous property is not always true

A prototypal implementation exists (GPL)
download from my home page http://www.di.unipi.it/~aldinuc

managers implemented as JBoss engines, see references

Wednesday, February 18, 2009

http://www.di.unipi.it/~aldinuc
http://www.di.unipi.it/~aldinuc

Managers and Contracts
Component Type Manager Contract mi

C1 active pipe Klow ≤ Tself ≤ Khigh

(user defined)
Klow,Khigh constants;

TC2
, TC3

, TC4
monitored

Tself = max{TC2
, TC3

, TC4
} [↑]

CPC2
= CP; CPC3

= CP; CPC4
=

CP [↓]

C3 active farm (CPsuper) ∧ (ITself ≤ Tself)
(derived)

ITself = request inter-arrival time; nself =
#workers

let Cj children of C3, 1 ≤ j ≤ nself : TCj

monitored

Tself =
∑

j=1..nself
TCj

/n2
self ; [↑]

CPCj
= optimise(TCj

); [↓]

C5 active pipe CPsuper (derived) TC6
, TC7

, TC8
monitored

Tself = max{TC6
, TC7

, TC8
}; [↑]

CP6 = null; CP7 = null; CP8 = null; [↓]

C2,4,6,7,8 passive seq none provide TC2,4,6,7,8
via NF port (respectively)

Wednesday, February 18, 2009

Plan Expected Cost Expected Benefit

PLf1 move the slower
worker Cw to a
faster platform, if
any

cost(stop(Cw);
deploy(Cw);
start(Cw))

decrease service time. Tfarm(!t+h) = δTCw
(!t),

0 ≤ δ ≤ 1 speed difference between the platforms

PLf2 increase parallelism
degree (allocate k
new workers)

cost(deploy(Cwj);
start(Cwj)) for
j = 1..k instances

decrease service time. Tfarm(!t+h) = δTfarm(!t)
δ = n/(n + k)

PLf3 decrease parallelism
degree (de-allocate k
workers)

cost(stop(Cwj))
for j = 1..k
instances

increase service time. Tfarm(!t+h) = δTfarm(!t)
δ = (n + k)/n

PLf4 raise violation 0 (negligible) none

PLp1 move stage (Cs)
with maximum T to
a faster resource, if
any

cost(stop(Cs);
deploy(Cs);
start(Cs))

decrease service time. Tpipe(!t+h)
= δTpipe(!t), 0 ≤ δ ≤ 1 speed
difference between the platforms if
max{TCS , Tpipe(C1, . . . , Cs−1, Cs+1, . . . , Ck} =
TCS , otherwise δ = 1

PLp2 collapse adjacent
stages Cs, Cs+1

cost(stop(Cs);
deploy(Cs);
start(Cs)) for Cs

and Cs+1

decrease resource usage n = n−1. increase service
time. Tpipe(!t+h) = δ+Tpipe(!t), δ = 0 iff TCs+
TCs+1 ≤ Tpipe(!t), δ = TCs + TCs+1 − Tpipe(!t)
otherwise

PLp3 raise violation 0 (negligible) none

Wednesday, February 18, 2009

DEMO

Wednesday, February 18, 2009

Segmentation

Dicom

decoder GU

Segmentation

Dicom

decoder

image DB

Slice 0

0 min
1 min

3 min
4 min

5 min

Alice

age ...

Slice 1

0 min
1 min

3 min
4 min

5 min

Slice 2

0 min
1 min

3 min
4 min

5 min

Slice n

0 min
1 min

3 min
4 min

5 min

Segmentation

Background
removal

Anisotropic
filtering

Thorax Removal
& Watershed

Output

widget

Movement
correction

Classification
 & Washout

0 minx min - = diff x

Aftern x min Diff x

Curves in the 4th dimensional space
(X,Y,Time,Enhancement)

Farm
Manager

Top
Manager

Dicom

decoder

Example: Mammography

Segmentation

IEEE IPDPS, Roma, May 2009

Wednesday, February 18, 2009

screen

mandel

broot

mandel

broot

mandel

broot

dataset

generator
S C

mandel

worker

mandel

worker

mandel

worker

farm

manager

app

manager

Mandelbrot example (two-levels)

unicast from_any

! get_service_time
" change // degree

" new contract (e.g. Ts<k)
! raise violation

demo
Wednesday, February 18, 2009

We have outlined a framework suitable for modelling
hierarchical autonomic management

not only for grid: clouds, distributed , multi/many core, ...
We enriched the framework with behavioural skeletons

previously existing only “in insulation”
contracts and manager implementation can be automatically
generated also in case of composition

We implemented (GCM); we got a ETSI standard
we show with a demo they are effective

 has been elected in Jan 2009 “EC ITC project
of the month”

Conclusions

Wednesday, February 18, 2009

1. M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonellotto. Behavioural skeletons for component autonomic
management on grids. In CoreGRID Workshop on Grid Programming Model, Heraklion, Crete, Greece, June 2007.

2. M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonellotto, and P. Kilpatrick. Behavioural skeletons in GCM:
autonomic management of grid components. In D. E. Baz, J. Bourgeois, and F. Spies, editors, Proc. of Intl. Euromicro PDP 2008: pages 54–63,
Toulouse, France, Feb. 2008. IEEE.

3. M. Aldinucci and M. Danelutto. Skeleton based parallel programming: functional and parallel semantic in a single shot. Computer Languages, Systems
and Structures, 33(3-4):179–192, Oct. 2007.

4. M. Aldinucci, M. Danelutto, and P. Dazzi. Muskel: an expandable skeleton environment. Scalable Computing: Practice and Experience, 8(4):325–341,
Dec. 2007.

5. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Adding metadata to orc to support reasoning about grid programming. In T. Priol and M. Vanneschi,
editors, Towards Next Generation Grids (Proc. of the CoreGRID Symposium 2007), CoreGRID, pages 205–214, Rennes, France, Sept. 2007. Springer.

6. M. Aldinucci, M. Danelutto, and P. Kilpatrick. A framework for prototyping and reasoning about grid systems. In Parallel Computing: Architectures,
Algorithms and Applications (Proc. of PARCO 2007, Jülich, Germany), volume 38 of NIC, pages 235–242, Germany, Dec. 2007.

7. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Management in distributed systems: a semi-formal approach. In A.-M. Kermarrec, L. Bougé, and
T. Priol, editors, Proc. Euro-Par 2007 Parallel Processing, volume 4641 of LNCS, pages 651–661, Rennes, France, Aug. 2007. Springer.

8. M. Aldinucci, M. Danelutto, P. Kilpatrick, and P. Dazzi. From Orc models to distributed grid Java code. In S. Gorlatch, P. Fragopoulou, and
T. Priol, editors, Grid Computing: Achievements and Prospects, CoreGRID, pages 13–24. Springer, 2008.

9. M. Aldinucci, M. Danelutto, P. Kilpatrick, and P. Dazzi. From Orc models to distributed grid Java code. In S. Gorlatch, P. Fragopoulou, and
T. Priol, editors, Proc. of the Integrated Research in Grid Computing Workshop, CoreGRID, pages 2–13, Hersonissos, Crete, Greece, Apr. 2008.

10. M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonellotto. Behavioural skeletons for component autonomic
management on grids. In Making Grids Work, CoreGRID, chapter Component Programming Models, pages 3–16. Springer, Aug. 2008.

11. M. Aldinucci and M. Danelutto. Securing skeletal systems with limited performance penalty: the Muskel experience. Journal of Systems Architecture,
54(9):868–876, Sept. 2008.

12. M. Aldinucci, M. Danelutto, H. L. Bouziane, and C. Pérez. Towards software component assembly language enhanced with workflows and skeletons.
In Proc. of the ACM SIGPLAN Component-Based High Performance Computing, pages 1–11, New York, NY, USA, Oct. 2008. ACM.

13. M. Aldinucci, M. Danelutto, G. Zoppi, and P. Kilpatrick. Advances in autonomic components & services. In T. Priol and M. Vanneschi, editors,
From Grids To Service and Pervasive Computing, CoreGRID, pages 3–18, Las Palmas, Spain, Aug. 2008. Springer.

14. M. Aldinucci and E. Tuosto. Towards a formal semantics for autonomic components. In T. Priol and M. Vanneschi, editors, From Grids To Service
and Pervasive Computing (Proc. of the CoreGRID Symposium 2008), CoreGRID, pages 31–45, Las Palmas, Spain, Aug. 2008. Springer.

15. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic management of non-functional concerns in distributed and parallel application
programming. In Proc. of Intl. Parallel & Distributed Processing Symposium (IPDPS), Rome, Italy, May 2009. IEEE. To appear.

16. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Co-design of distributed systems using skeletons and autonomic management abstractions. In
Workshops of Euro-Par 2008, volume 5415 of LNCS, 2009. To appear.

17. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Towards hierarchical management of autonomic components: a case study. In Proc. of Intl. Euromicro
PDP 2009: Parallel Distributed and network-based Processing, Weimar, Germany, Feb. 2009. IEEE. To appear.

THANK YOU
Questions?

Wednesday, February 18, 2009

