
Efficient Smith-Waterman on multi-core
with FastFlow

BioBITs

Marco Aldinucci
Computer Science Dept. - University of Torino - Italy

Massimo Torquati
Computer Science Dept. - University of Pisa - Italy

Massimiliano Meneghin
IBM Technology Campus, Dublin Software Lab, Ireland

Euromicro PDP 2010 - Pisa Italy - 17th Feb 2010

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

Outline

Motivations
FastFlow

Performance

Smith-Waterman benchmark
Performance

Conclusions & Commercial

Wednesday, February 17, 2010

[< 2004] Shared Font-Side Bus
(Centralized Snooping)

Wednesday, February 17, 2010

[2005] Dual Independent Buses
(Centralized Snooping)

Wednesday, February 17, 2010

[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

This and next generation Multi-cores
Are programmed at “concurrent assembler” level

Complex, not portable, not efficient

Exploit cache coherence
Memory fences are expensive
Will worsen with core count
Atomic ops do not solve the problem (still fences)

Fine-grained parallelism is off-limits
I/O bound problems, High-throughput, Streaming, Irregular DP problems
Automatic and assisted parallelisation

[2009] i7 QuickPath
(MESI-F Directory Coherence)

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

E.g. farm (a.k.a. master-workers)

Common paradigm
Model foreach loop and Divide&Conquer
Exploit it as a high-order language construct

Why should we re-code it from scratch each application?

A C++ template factory exploiting highly optimised implementation

E C

W
1

W
2

W
n

schedule
tasks

workers
(compute something)

gather
results

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

E.g. farm with POSIX lock/unlock

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

average execution time per task

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

Lock-free and CAS-free (fence-free)

Single-Producer-Single-Consumer FIFO queues
Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)
Giacomoni et al. 2008 PPoPP (Relaxed consistencies (e.g. TSO) - passive)

Multiple-Producers-Multiple-Consumers FIFO queues
with CAS (at least one) - passive ... a plethora
without CAS - passive ! Cannot be done
without CAS - active ! FastFlow

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

FastFlow: A step forward

High-level programming
Implemented on top of lock-free/fence-free non-blocking synchronizations
C++ STL-like implementation

E C

W
1

W
2

W
n

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

F
a
st
F
lo
w

Problem Solving
Environment

High-level
programming

Low-level
programming

Run-time
support

Hardware

Applications

E C

P C

Producer Consumerlock-free SPSC queue

SPMC MPSC

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

Coarse grain (50 μS workload)

E C

W
1

W
2

W
n

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

Medium grain (5 μS workload)

E C

W
1

W
2

W
n

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

Medium grain (5 μS workload)

E C

W
1

W
2

W
n

TBB manual says:
no less than 10.000
clock cycles, i.e.
about 5μS

Wednesday, February 17, 2010

http://mc-fastflow.sourceforge.net

BioBITs

Fine grain (0.5 μS workload)

E C

W
1

W
2

W
n

Wednesday, February 17, 2010

Smith-Waterman algorithm
Local alignment - dynamic programming - O(nm)

Wednesday, February 17, 2010

BioBits

Fast Smith-Waterman

Smith-Waterman algorithm
Local alignment
Time and space demanding O(mn), often replaced by approximated BLAST
Dynamic programming
Real-world application

It has been accelerated by using FPGA, GCPU (CUDA), SSE2/x86, IBM Cell

Best software implementation up to now
SWPS3: evolution of Farrar’s implementation

SSE3 + POSIX IPC

Wednesday, February 17, 2010

Experiment parameters
Affine Gap Penalty: 10-2k, 5-2k, ...

Substitution Matrix: BLOSUM50

•Substitution Matrix: describes the rate at which one character in a sequence changes to
other character states over time

•Gap Penalty: describes the costs of gaps, possibly as function of gap length

Wednesday, February 17, 2010

BioBits

Smith-Waterman testbed

Each query sequence (protein) is
aligned against the whole protein
DB

E.g. Compare unknown sequence against a
DB of known sequences

SWPS3 implementation exploits
POSIX processes and pipes

Faster than POSIX threads + locks
http://people.inf.ethz.ch/sadam/swps3/

Threads or Processes or ...

Shared memory
(read-only)

SW1

SW2

SWn

Query sequence
(e.g. GAATTC...)

UniProtKB
Swiss-Prot

471472 sequences
167326533 amino-acids

Results

Wednesday, February 17, 2010

http://people.inf.ethz.ch/sadam/swps3/
http://people.inf.ethz.ch/sadam/swps3/

BioBits

Smith Waterman (10-2k gap penalty)

Wednesday, February 17, 2010

BioBits

Smith Waterman (10-2k gap penalty)

Wednesday, February 17, 2010

BioBits

Smith Waterman (5-2k gap penalty)

Wednesday, February 17, 2010

BioBits

Smith Waterman (5-2k gap penalty)

Wednesday, February 17, 2010

20 // FastFlow accelerated code
21 #define N 1024
22 long A[N][N],B[N][N],C[N][N];
23 int main() {
24 // < init A,B,C>
25

26 ff ::ff farm<> farm(true /∗ accel ∗/);
27 std :: vector<ff :: ff node ∗> w;
28 for(int i=0;i<PAR DEGREE;++i)
29 w.push back(new Worker);
30 farm.add workers(w);
31 farm.run then freeze();
32

33 for (int i=0;i<N;i++) {
34 for(int j=0;j<N;++j) {
35 task t ∗ task = new task t(i,j);
36 farm.offload(task);
37 }
38 }
39 farm.offload((void ∗)ff ::FF EOS);
40 farm.wait(); // Here join
41 }
42

43 // Includes
44 struct task t {
45 task t(int i ,int j) : i (i) , j(j) {}
46 int i ; int j ;};
47

48 class Worker: public ff :: ff node {
49 public: // Offload target service
50 void ∗ svc(void ∗task) {
51 task t ∗ t = (task t ∗)task;
52 int C=0;
53 for(int k=0;k<N;++k)
54 C += A[t−>i][k]∗B[k][t−>j];
55 C[t−>i][t−>j] = C;
56 delete t;
57 return GO ON;
58 }
59 };

1 // Original code

2 #define N 1024
3 long A[N][N],B[N][N],C[N][N];
4 int main() {
5 // < init A,B,C>
6

7 for(int i=0;i<N;++i) {
8 for(int j=0;j<N;++j) {
9

10 int C=0;
11 for(int k=0;k<N;++k)
12 C += A[i][k]∗B[k][j];
13 C[i][j]= C;
14

15 }
16 }
17 }

! !

"

#

$

$

%

#

"

%

&

&

Is
Fa

stF
low

 ea
sy

 to
 us

e?
 Ye

s!

Wednesday, February 17, 2010

BioBits

Conclusions

FastFlow efficiently supports streaming applications on
commodity SCM (e.g. Intel core architecture)

More efficiently than POSIX (standard or CAS lock), Cilk, OpenMP, TBB

Smith Waterman algorithm with FastFlow
Obtained from SWPS3 by syntactically substituting read and write on POSIX
pipes with fastflow push and FastFlow pop an push

In turn, POSIX pipes are faster than POSIX threads + locks in this case

Scores twice the speed of best known parallel implementation (SWPS3) on the
same hardware (Intel 2 x Quad-core 2.5 GHz)

Wednesday, February 17, 2010

DON’T BELIEVE?

CHECK IT OUT!

Wednesday, February 17, 2010

THANK YOU! QUESTIONS?

 http://sourceforge.net/projects/mc-fastflow/

Started in Nov ‘09
at today over 600 downloads

In the top ten of reddit.com/c++
from several weeks

Wednesday, February 17, 2010

http://sourceforge.net/projects/mc-fastflow/
http://sourceforge.net/projects/mc-fastflow/

