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[< 2004] Shared Font-Side Bus
(Centralized Snooping)
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[2005] Dual Independent Buses
(Centralized Snooping)
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[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)
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This and next generation Multi-cores
Are programmed at “concurrent assembler” level

Complex, not portable, not efficient

Exploit cache coherence
Memory fences are expensive
Will worsen with core count
Atomic ops do not solve the problem (still fences)

Fine-grained parallelism is off-limits
I/O bound problems, High-throughput, Streaming, Irregular DP problems
Automatic and assisted parallelisation

[2009] i7 QuickPath
(MESI-F Directory Coherence)
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E.g. farm (a.k.a. master-workers)

Common paradigm
Model foreach loop and Divide&Conquer
Exploit it as a high-order language construct 

Why should we re-code it from scratch each application?

A C++ template factory exploiting highly optimised implementation
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E.g. farm with POSIX lock/unlock 
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Lock-free and CAS-free (fence-free)

Single-Producer-Single-Consumer FIFO queues
Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)
Giacomoni et al. 2008 PPoPP (Relaxed consistencies (e.g. TSO) - passive)

Multiple-Producers-Multiple-Consumers FIFO queues
with CAS (at least one) - passive ... a plethora
without CAS - passive ! Cannot be done
without CAS - active ! FastFlow
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FastFlow: A step forward

High-level programming
Implemented on top of lock-free/fence-free non-blocking synchronizations
C++ STL-like implementation
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Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model 

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues 

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons 

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...
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Coarse grain (50 μS workload)
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Medium grain (5 μS workload)
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Medium grain (5 μS workload)
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TBB manual says:
no less than 10.000
clock cycles, i.e.
about 5μS
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Fine grain (0.5 μS workload)
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Smith-Waterman algorithm
Local alignment - dynamic programming - O(nm)
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Fast Smith-Waterman

Smith-Waterman algorithm
Local alignment
Time and space demanding O(mn), often replaced by approximated BLAST
Dynamic programming
Real-world application

It has been accelerated by using FPGA, GCPU (CUDA), SSE2/x86, IBM Cell

Best software implementation up to now
SWPS3: evolution of Farrar’s implementation

SSE3 + POSIX IPC
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Experiment parameters
Affine Gap Penalty: 10-2k, 5-2k, ...

Substitution Matrix: BLOSUM50

•Substitution Matrix: describes the rate at which one character in a sequence changes to 
other character states over time  

•Gap Penalty: describes the costs of gaps, possibly as function of gap length 
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Smith-Waterman testbed

Each query sequence (protein) is 
aligned against the whole protein 
DB

E.g. Compare unknown sequence against a 
DB of known sequences

SWPS3 implementation exploits 
POSIX processes and pipes

Faster than POSIX threads + locks 
http://people.inf.ethz.ch/sadam/swps3/

Threads or Processes or ...

Shared memory
(read-only)

SW1

SW2

SWn

Query sequence
(e.g. GAATTC...)

UniProtKB
Swiss-Prot

471472 sequences 
167326533 amino-acids

Results
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Smith Waterman (10-2k gap penalty)

Wednesday, February 17, 2010



BioBits

Smith Waterman (10-2k gap penalty)
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Smith Waterman (5-2k gap penalty)
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Smith Waterman (5-2k gap penalty)
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20 // FastFlow accelerated code
21 #define N 1024
22 long A[N][N],B[N][N],C[N][N];
23 int main() {
24 // < init A,B,C>
25

26 ff ::ff farm<> farm(true /∗ accel ∗/);
27 std :: vector<ff :: ff node ∗> w;
28 for(int i=0;i<PAR DEGREE;++i)
29 w.push back(new Worker);
30 farm.add workers(w);
31 farm.run then freeze();
32

33 for (int i=0;i<N;i++) {
34 for(int j=0;j<N;++j) {
35 task t ∗ task = new task t(i,j);
36 farm.offload(task);
37 }
38 }
39 farm.offload((void ∗)ff ::FF EOS);
40 farm.wait(); // Here join
41 }
42

43 // Includes
44 struct task t {
45 task t(int i ,int j) : i ( i ) , j(j) {}
46 int i ; int j ;};
47

48 class Worker: public ff :: ff node {
49 public: // Offload target service
50 void ∗ svc(void ∗task) {
51 task t ∗ t = (task t ∗)task;
52 int C=0;
53 for(int k=0;k<N;++k)
54 C += A[t−>i][k]∗B[k][t−>j];
55 C[t−>i][t−>j] = C;
56 delete t;
57 return GO ON;
58 }
59 };

1 // Original code

2 #define N 1024
3 long A[N][N],B[N][N],C[N][N];
4 int main() {
5 // < init A,B,C>
6

7 for(int i=0;i<N;++i) {
8 for(int j=0;j<N;++j) {
9

10 int C=0;
11 for(int k=0;k<N;++k)
12 C += A[i][k]∗B[k][j ];
13 C[i ][ j]= C;
14

15 }
16 }
17 }
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Conclusions

FastFlow efficiently supports streaming applications on 
commodity SCM (e.g. Intel core architecture)

More efficiently than POSIX (standard or CAS lock), Cilk, OpenMP, TBB

Smith Waterman algorithm with FastFlow
Obtained from SWPS3 by syntactically substituting read and write on POSIX 
pipes with fastflow push and FastFlow pop an push

In turn, POSIX pipes are faster than POSIX threads + locks in this case

Scores twice the speed of best known parallel implementation (SWPS3) on the 
same hardware (Intel 2 x Quad-core 2.5 GHz)
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DON’T BELIEVE?

CHECK IT OUT!
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THANK YOU! QUESTIONS?

 http://sourceforge.net/projects/mc-fastflow/

Started in Nov ‘09 
at today over 600 downloads

In the top ten of reddit.com/c++ 
from several weeks

Wednesday, February 17, 2010

http://sourceforge.net/projects/mc-fastflow/
http://sourceforge.net/projects/mc-fastflow/

