
Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Skeletons from grids to multicores

Marco Danelutto

Dept. of Computer Science, University of Pisa, Italy

October 2010, Amsterdam

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Contents

1 Introduction
Scenario
Urgencies

2 Multicores
Scenario
FastFlow
Experimental results
Offloading

3 Non functional concerns
Scenario
Behavioural skeletons
Hierarchical composition
Multiple concern management

4 Conclusions

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Structured parallel programming

Algorithmic skeletons

Cole 1988 → common, parametric, reusable parallelism
exploitation pattern
languages & libraries since ’90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)
high level parallel abstractions (parallel programming
community)

hiding most of the technicalities related to parallelism
exploitation
directly exposed to applicaion programmes

Parallel design patterns

Massingill, Mattson, Sanders 2000 → “Patterns for parallel
programming” book (2006) (software engineering community)
design patterns à la Gamma book

name, problem, solution, use cases, etc.

concurrency, algorithms, implementation, mechanisms

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Structured parallel programming

Algorithmic skeletons

Cole 1988 → common, parametric, reusable parallelism
exploitation pattern
languages & libraries since ’90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)
high level parallel abstractions (parallel programming
community)

hiding most of the technicalities related to parallelism
exploitation
directly exposed to applicaion programmes

Parallel design patterns

Massingill, Mattson, Sanders 2000 → “Patterns for parallel
programming” book (2006) (software engineering community)
design patterns à la Gamma book

name, problem, solution, use cases, etc.

concurrency, algorithms, implementation, mechanisms

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Structured parallel programming

Algorithmic skeletons

Cole 1988 → common, parametric, reusable parallelism
exploitation pattern
languages & libraries since ’90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)
high level parallel abstractions (parallel programming
community)

hiding most of the technicalities related to parallelism
exploitation
directly exposed to applicaion programmes

Parallel design patterns

Massingill, Mattson, Sanders 2000 → “Patterns for parallel
programming” book (2006) (software engineering community)
design patterns à la Gamma book

name, problem, solution, use cases, etc.

concurrency, algorithms, implementation, mechanisms

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Concept evolution

Parallelism

parallelism exploitation patterns shared among applications

separation of concerns:

system programmers → efficient implementation of parallel
patterns
application programmers → application specific details

New architectures

Heterogeneous in Hw & Sw

Multicore NUMA, cache coherent architectures

Further non functional concerns

security, fault tolerance, power management, . . .

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Concept evolution

Parallelism

parallelism exploitation patterns shared among applications

separation of concerns:

system programmers → efficient implementation of parallel
patterns
application programmers → application specific details

New architectures

Heterogeneous in Hw & Sw

Multicore NUMA, cache coherent architectures

Further non functional concerns

security, fault tolerance, power management, . . .

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Concept evolution

Parallelism

parallelism exploitation patterns shared among applications

separation of concerns:

system programmers → efficient implementation of parallel
patterns
application programmers → application specific details

New architectures

Heterogeneous in Hw & Sw

Multicore NUMA, cache coherent architectures

Further non functional concerns

security, fault tolerance, power management, . . .

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Urgencies

→ Targeting multi/many cores

different implementation issued and solutions

completely different computational grains to be addressed

→ Targeting non functional concerns

autonomic management of independent non functional
concerns

co-management of different non functional concerns

Structured parallel programming models

can be exploited to address both issues

synergies among the solutions may be exploited as well

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Urgencies

→ Targeting multi/many cores

different implementation issued and solutions

completely different computational grains to be addressed

→ Targeting non functional concerns

autonomic management of independent non functional
concerns

co-management of different non functional concerns

Structured parallel programming models

can be exploited to address both issues

synergies among the solutions may be exploited as well

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Targeting multicores

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Targeting multi/many cores

Structured parallel programming on COW/NOW

Implementation template based

P3L, eSkel, Muesli, SkeTo → collection of
〈Architecture,ProcessNetwork,Model〉

Macro Data Flow based

Lithium/Muskel, Skipper, Calcium (Skandium) → compile
skeletons to MacroDataFlow graphs + Dstributed MDF
interpreter

Emphasis

communication latency hiding

avoid unnecessary data copies

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Targeting multi/many cores

Structured parallel programming on COW/NOW

Implementation template based

P3L, eSkel, Muesli, SkeTo → collection of
〈Architecture,ProcessNetwork,Model〉

Macro Data Flow based

Lithium/Muskel, Skipper, Calcium (Skandium) → compile
skeletons to MacroDataFlow graphs + Dstributed MDF
interpreter

Emphasis

communication latency hiding

avoid unnecessary data copies

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Multi/many core features

Shared memory hierarchy

NUMA (C vs. M accesses, non uniform intercore
interconnection strctures)

chache coherence (snoopy vs. directory based)

Control abstractions

threads (user vs. system space, completion vs. time
sharing)

processes

Focus

synchronization overheads

data access patterns

thread-core binding, affinity scheduling

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Multi/many core features

Shared memory hierarchy

NUMA (C vs. M accesses, non uniform intercore
interconnection strctures)

chache coherence (snoopy vs. directory based)

Control abstractions

threads (user vs. system space, completion vs. time
sharing)

processes

Focus

synchronization overheads

data access patterns

thread-core binding, affinity scheduling

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow

Advanced programming framework

targeting multicores

minimizing synchronization latencies

streaming support through skeletons

expandable

open source

Multi-core and many-core
cc-UMA or cc-NUMA

Linear streaming networks
Lock-free SPSC queues and threading model,

Producer-Consumer paradigm

Arbitrary streaming networks
Lock-free SPMC, MPSC, MPMC queues,

non-determinism, cyclic networks

Composable parametric patterns
of streaming networks

Skeletons: Pipeline, farm, D&C, ...
High-level

programming

Low-level
programming

Run-time
support

SPMC MPSC

Wn

W1

Farm

E C

SPMC MPSC

FastFlow

P C-P C

Applications & Problem Solving Environments
Directly programmed applications and further abstractions
targeting specific usage (e.g. accelerator & self-offloading)

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: simple streaming networks

Single Producer Single Consumer (SPSC) queue

uses results from the ’80

lock-free, wait-free

no memory barriers for Total Store Order processor (e.g.
Intel, AMD)

single memory barrier for weaker memory consistency
models (e.g. PowerPC)

→ very low latency in communications

P SPSC C

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: simple streaming networks

Other queues: SPMC MPSC MPCP

one-to-many, many-to-one and many-to-many
sychronization and data flow

use a explicit arbiter thread

providing lock-free and wait-free arbitrary data-flow graphs

cyclic graphs (provably deadlock-free)

SPSC E
SPSC

SPSC
SPMC

SPSCC

SPSC

SPSC
MPSC

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: high level programming
abstractions

Several “streaming” skeleton provided

farm

SPMC

f

f

MPSC

.

.

.

. . . xi+1, xi , xi−1 f (xi+1), f (xi), f (xi−1) . . .

pipeline
f g. . . xi+1, xi , xi−1 f (xi+1), f (xi), f (xi−1) . . .

farm with feedback

SPMC

f

f

MPSC

.

.

.

. . . xi+1, xi , xi−1 . . .

. . . x′j , x
′
j+1 . . .

. . . f (xi+1), f (x′j−1), f (xi), f (xi−1) . . .

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: results

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
0.5us

1us
5us

Speedup

Shows the advantage of lock free comms

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: results

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
0.5us

1us
5us

Speedup

Shows the advantage of lock free comms

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: results

Matrix multiplication

parallel for i only

matmul ff v1 matmul ff v2 matmul OpenMP
n. workers Time Speedup Time Speedup Time Speedup

4 2982.24 3.6 2691.74 4.0 2767.48 3.9
8 1495.87 7.2 1435.41 7.5 1455.73 7.4

12 1496.01 7.2 1431.34 7.5 1492.87 7.2
16 1495.74 7.2 1426.42 7.6 1433.31 7.5

FastFlow vs. OpenMP

Comparable at quite coarse grain

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: results

Matrix multiplication

parallel for i only

matmul ff v1 matmul ff v2 matmul OpenMP
n. workers Time Speedup Time Speedup Time Speedup

4 2982.24 3.6 2691.74 4.0 2767.48 3.9
8 1495.87 7.2 1435.41 7.5 1455.73 7.4

12 1496.01 7.2 1431.34 7.5 1492.87 7.2
16 1495.74 7.2 1426.42 7.6 1433.31 7.5

FastFlow vs. OpenMP

Comparable at quite coarse grain

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: different appls

Microbenchmarks

Benchmark Parameters Skeleton used Speedup / #cores

Matrix Mult. 1024x1024 farm no collector 7.6 / 8
Quicksort 50M integers D&C 6.8 / 8
Fibonacci Fib(50) D&C 9.21 / 8

Real use cases

Application Skeleton used Measure Value

YaDT-FF (C4.5 data mining) D&C Speedup 4.5-7.5
StochKit-FF (Gillespie) farm Scalabitily 10-11

SWPS3-FF (Gene matching) farm no collector GCUPS 12.5-34.5

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: different appls

Microbenchmarks

Benchmark Parameters Skeleton used Speedup / #cores

Matrix Mult. 1024x1024 farm no collector 7.6 / 8
Quicksort 50M integers D&C 6.8 / 8
Fibonacci Fib(50) D&C 9.21 / 8

Real use cases

Application Skeleton used Measure Value

YaDT-FF (C4.5 data mining) D&C Speedup 4.5-7.5
StochKit-FF (Gillespie) farm Scalabitily 10-11

SWPS3-FF (Gene matching) farm no collector GCUPS 12.5-34.5

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow: offloading

General purpose methodology

use FastFlow as an efficient, fine grain sw accelerator

1 //<includes; ff includes>
2 #define N 1024
3 int A[N][N],B[N][N],C[N][N];

5 int main() {

7 // < init A,B,C>

9 ff :: ff farm<> farm(true /∗ accel ∗/);
10 std :: vector<ff :: ff node ∗> w;
11 for(int i=0;i<NWORKERS;++i)
12 w.push back(new Worker);
13 farm.add workers(w);
14 farm.run then freeze();

16 for (int i=0;i<N;i++) {
17 for(int j=0;j<N;++j) {

19 task t ∗ task = new task t(i,j);
20 farm.offload(task);

22 }
23 }

25 farm.offload((void ∗)ff :: FF EOS);
26 farm.wait(); // Here join

28 }

29 struct task t {
30 task t(int i ,int j) : i (i) , j(j) {}
31 int i ;
32 int j ;
33 };

35 class Worker: public ff ::ff node {
36 public:
37 void ∗ svc(void ∗ task) {
38 task t ∗ t = (task t ∗)task;

40 int C=0;
41 for(int k=0;k<N;++k)
42 C += A[t−>i][k]∗B[k][t−>j];
43 C[t−>i][t−>j] = C;

45 delete t;
46 return GO ON;
47 }
48 };

55

1 //<includes>
2 #define N 1024
3 int A[N][N],B[N][N],C[N][N];
4

5 int main() {
6

7 // < init A,B,C>
8

9 for(int i=0;i<N;++i) {
10 for(int j=0;j<N;++j) {
11

12 int C=0;
13 for(int k=0;k<N;++k)
14 C += A[i][k]∗B[k][j];
15 C[i][j]= C;
16

17 }
18 }
19

20 }

①

④

②

❸

⑤
➽

➽

①

②

❸

④

⑤
a) Original code (sequential) b) FastFlow accelerated code (parallel)

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

FastFlow pros and cons

Pros:

very low overhead introduced

high level abstractions available to application
programmers

streaming fully supported

Cons:

parallelization of code requires “more code” w.r.t.
classical approaches

“structured” approach to parallelism required

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Targeting non functional concerns

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

The scenario

Several important non functional features to be considered:

performance → throughput, latency, load balancing

security → data, code

fault tolerance → checkpointing, recovery strategies

power management → power/speed tradeoff

Non functional

does not contribute to function computed

policies & strategies most likely in the background of
system programmers

Autonomic management

separation of concerns: system programmers (NF) vs. appl
programmers (FUN)

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Behavioural skeletons

Def: Behavioural skeleton

Co-design of a component including:

parallelism exploitation pattern

autonomic management of some non functional concern

Co design

improves efficiency

exploits knowledge relative to structure of the computation

in the design and implementation of suitable management
policies

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

BS: user view

Behavioural
Skeleton
Library

Autonomic
manager

Parallelism
exploitation

pattern

Application
dependent
parameters

BS
(composition)

Runnable
application

In
te

rf
a

ce

System
programmer

Application
programmer

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Sample Behavioural skeleton

Functional replication BS

Parallel pattern

Master-worker with variable number of workers.

Master schedules tasks to available workers.

Performance manager

Interarrival time faster than service time → increase
parallelism degree, unless communication bandwidth is
saturated.

Interarrival time slower that service time → decrease the
parallelism degree.

Recent change → do not apply any action for a while.

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Implementation: behavioural skeleton

Autonomic Manager

Parallel Pattern

actuators triggerssensors

Behavioural skeleton

active part

passive part

Triggers start manager activities

Sensors determine pattern perception from the manager

Actuators determine manager intervention possibilities

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Implementation: manager

Monitor

perceive pattern status

Analyse

figure out policies

Plan

devise strategy

Execute

implement decisions on pattern

Monitor

Analyze

Plan

Execute

Sensors

Actuators

MAPE loop implementation

Cyclic execution of a JBoss business rule engine

RULE :: Priority, Trigger, Condition → Action

Rule set :: derived from user supplied contract

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Implementation: manager

Monitor

perceive pattern status

Analyse

figure out policies

Plan

devise strategy

Execute

implement decisions on pattern

Monitor

Analyze

Plan

Execute

Sensors

Actuators

MAPE loop implementation

Cyclic execution of a JBoss business rule engine

RULE :: Priority, Trigger, Condition → Action

Rule set :: derived from user supplied contract

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Hierarchical composition

Program → Composition of BS

pipe(seq, farm(seq), seq)

Hierarchy of managers

user contract directed
to top level manager

propagated (possibly modified)
through manager tree

Management “exceptions”
manager not able to ensure contract

→ raises violation to upper
manager in hierarchy

→ enters passive mode waiting
for a new contract

pipe

farmseq seq

seq

(1) Ts < k

(2) Ts<k(2) Ts<k (2) Ts<k

(3) best effort

pipe

farmseq seq

seq

(1) violation:
not enough
inputs

(2) increase
throughput

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Hierarchical composition

Program → Composition of BS

pipe(seq, farm(seq), seq)

Hierarchy of managers

user contract directed
to top level manager

propagated (possibly modified)
through manager tree

Management “exceptions”
manager not able to ensure contract

→ raises violation to upper
manager in hierarchy

→ enters passive mode waiting
for a new contract

pipe

farmseq seq

seq

(1) Ts < k

(2) Ts<k(2) Ts<k (2) Ts<k

(3) best effort

pipe

farmseq seq

seq

(1) violation:
not enough
inputs

(2) increase
throughput

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Hierarchical composition

Program → Composition of BS

pipe(seq, farm(seq), seq)

Hierarchy of managers

user contract directed
to top level manager

propagated (possibly modified)
through manager tree

Management “exceptions”
manager not able to ensure contract

→ raises violation to upper
manager in hierarchy

→ enters passive mode waiting
for a new contract

pipe

farmseq seq

seq

(1) Ts < k

(2) Ts<k(2) Ts<k (2) Ts<k

(3) best effort

pipe

farmseq seq

seq

(1) violation:
not enough
inputs

(2) increase
throughput

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

BS: sample run

Medical image processing

pipe(seq(getImage),
farm(seq(renderImage)),
seq(displayImage))

contract → 0.3 to 0.7 images per second

initial condition

enough processing resources
image provider stage too slow

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

BS: sample run

incrRate
decrRate

inquire

 notEnough
tooMuch

endStream

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00

T
o

p
 M

a
n

a
g

e
r

L
o

g
ic

delWorker
 rebalance
addWorker

raiseViol

contrLow
contrHight

tooMuch
notEnough
unbalance

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00F
a

rm
 M

a
n

a
g

e
r

L
o

g
ic

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00

G
lo

b
a

l
B

e
h

a
v
io

u
r

Contract
Throughput

Input Task Rate

 5.0

 6.0

 7.0

 8.0

 9.0

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00

R
e

s
o

u
rc

e
s

Wall clock Time (mm:ss)

cores

ta
sk

s/
s

CP

U
co

re
s

reconfigurations

Se
ns

or
s

Ef
fe

ct
or

s
Se

ns
or

s
Ef

fe
ct

or
s

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Multiple concern management

Indipendent manager hierarchies

take care of indipendent concerns (e.g. Performance and
Security)

must coordinate independently taken decisions

to avoid instability

S1

E

W1
(S2)

W2
(S2)

W3
(S2)

W4
(S2)

C

S3

AMpipe
S

AMseq
S

AMfarm
S

AMseq
S

AMpipe
P

AMseq
P

AMfarm
P

AMseq
P

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

BS: Coordination protocol

Fireable rule (Manager X) Rz :: Trigi ,Condj ,Priok→a1, . . . , an

Step 0 broadcast changes in the computation graph
eventually induced by Rz

Step 1 gather answers from all other manager
(hierarchies)

Step 2 analyze answers:

all OK → perform a1, . . . , an
at least one NOK → ABORT Rz & lower
Priok
require(Propertym) → perform a′1, . . . , a

′
n′

such that Propertym is ensured

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

BS: coordination protocol

program → farm(seq) contract :: parDegree=8

Security AM
Performance AM

sendAckErr
sendAckNoSec

sendAckSec
workerUp

endAckOkSec
endAckOkNoSec

recErrAck
sendBroadReq
prepBroadReq

00:00 00:20 00:40 01:00

To
p

M
an

ag
er

s
Lo

gi
cs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

00:00 00:20 00:40 01:00

Fa
rm

 W
or

ke
rs

Add secure worker

Add non secure worker

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

BS pros and cons

Pros:

full decoupling of system and application programmer
concerns

reconfigurable autonomic management through JBoss rule
engine

two prototypes available: GCM BS (ProActive/GCM
based) and LIBERO (pure Java/RMI, configurable
action/sensor interface)

Cons:

further investigation needed on multiple concern
management

compiler contract → JBoss rules needed

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Conclusions

Skeletons from grids to multicores

Grids

BS suitable to manage typical features of grids:
heterogeneity, distribution, security, ...

Multicores

efficient mechanisms supporting typical grains

Next step

adopt BS like management to improve (at run time) the
performance of FastFlow

e.g. depending on current system behaviour

experiment, evaluate, adopt new skeleton composition
e.g. farm(pipe(seq,seq)) → pipe(farm(seq), farm(seq))

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

References

These slides available at
http://www.di.unipi.it/~marcod

follow “Papers” then “Talks” tabs

FastFlow home page at
http://calvados.di.unipi.it/dokuwiki/doku.php?

id=ffnamespace:about

source code (GPL) at
http://sourceforge.net/projects/mc-fastflow/

ProActive/GCM BS home page at
http://gridcomp.ercim.eu/content/view/26/34/

LIBERO prototype: ask author(s) at
marcod@di.unipi.it

http://www.di.unipi.it/~marcod
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about
http://sourceforge.net/projects/mc-fastflow/
http://gridcomp.ercim.eu/content/view/26/34/
marcod@di.unipi.it

Skeletons
from grids to

multicores

M. Danelutto

Introduction

Scenario

Urgencies

Multicores

Scenario

FastFlow

Experimental
results

Offloading

Non functional
concerns

Scenario

Behavioural
skeletons

Hierarchical
composition

Multiple concern
management

Conclusions

Any questions?

marcod@di.unipi.it

marco.danelutto@danelutto.org

marcod@di.unipi.it
marco.danelutto@danelutto.org

	Introduction
	Scenario
	Urgencies

	Multicores
	Scenario
	FastFlow
	Experimental results
	Offloading

	Non functional concerns
	Scenario
	Behavioural skeletons
	Hierarchical composition
	Multiple concern management

	Conclusions

