
Accelerating code on multi-cores with FastFlow
Marco Aldinucci

Computer Science Dept. - University of Torino (Turin) - Italy

Massimo Torquati and Marco Danelutto
Computer Science Dept. - University of Pisa - Italy

Massimiliano Meneghin
IBM Research, Ireland

Peter Kilpatrick
Queen’s University Belfast, U.K.

EuroPar 2011
Bordeaux - France

1st Sept 2001

1

http://mc-fastflow.sourceforge.net

Outline

Porting of existing sequential codes onto multi-core
a motivational example (edge-preserving denoiser)

Offloading and FastFlow accelerators
methodology and programming framework supporting fine-grain parallel codes

FastFlow programming model
Design and Implementation
Experimental evaluation

Demo & Conclusion
2

http://mc-fastflow.sourceforge.net

Running example: edge-preserving denoiser
#include <opencv/highgui.h>
#include <opencv/cv.h>

int main(int argc, char *argv[]) {
 CvCapture *capture;
 IplImage * frame,clean_frame;
 char key;
 vector<noisy_t> noisy;
 cvNamedWindow("Video", CV_WINDOW_AUTOSIZE);
 capture = cvCreateCameraCapture(CV_CAP_ANY);
 //capture = cvCreateFileCapture("/path/to/your/video/test.avi");
 while(true) {
 frame = cvQueryFrame(capture); // get a frame from device
 noisy = myDetect(frame); // detect noisy pixels
 clean_frame = myDenoise(frame,noisy); // denoise the frame
 cvShowImage("Video", clean_frame); // show the denoised frame
 key = cvWaitKey(100);
 }
 cvReleaseCapture(&capture);
 cvDestroyWindow("Video");
}

3

http://mc-fastflow.sourceforge.net

Application performance
myDetect and myDenoise filters are slow and exhibits a different
computing time

Detect is O(size), Denoise is O(size*noise%*image_complexity)

in principle the app can be parallelised exploiting
data parallelism on filters
pipeline/stream parallelism among capture, the two filters, and display

in practice Intel’s opencv is not fully thread-safe (signals)
capture and display should be run in the main thread
e.g. embedding the app in a TBB not easy (highgui cannot be used), the manual
parallelisation via pthreads crash, ...

4

http://mc-fastflow.sourceforge.net

Easy parallelisation of existing codes

offloading
onto HW accelerator

offloading

5

http://mc-fastflow.sourceforge.net

Easy parallelisation of existing codes

offloading
onto other cores and
accelerators

6

Parallelisation via offloading onto
structured software accelerator

7

http://mc-fastflow.sourceforge.net

Accelerator & self-offloading
Target the parallelisation of legacy code

No need to redesign the application; local intervention in the code

Transform loops and D&C in streaming then offload them into
dynamically created accelerators using spare cores
Parallelising requires management of data dependency

True dependency: fast synchronisation via FastFlow
False dependency (Write-Read, Write-Write): remove

Variable streamization (i.e. dynamic privatisation onto a stream). More powerful than expansion (do-across

8

Original Privatization Expansion
...
for (i=0; i<N;++i) {

temp=A[i]+2;
B[i]=2⇤temp;

}

...
for (i=0;i<N;++i) {

private temp=A[i]+2;
B[i]=2⇤temp;

}

...
for (i=0;i<N;++i) {

temp[i]=A[i]+2;
B[i]=2⇤temp[i];

}

http://mc-fastflow.sourceforge.net

Accelerator & self-offloading

FastFlow-based stream-oriented parallel accelerators
Source of stream parallelism

Natural
external devices, network: antenna, audio/video, medical instruments, ...

Produced via streamization from recursion/iteration
streamization of recursion

streamization of loops without dependencies (do-independent)

streamization of loops with dependencies (do-across)

9

http://mc-fastflow.sourceforge.net

Accelerator architecture

Multi-core and many-core
cc-UMA or cc-NUMA

FastFlow
Composable parametric

patterns: pipeline, farm, ...

main thread

M
Applications

Accelerator
Self-offloading

Natively
parallel

FastFlow
applications

offload stream

farm

result stream

farm(pipeline)

termination

10

http://mc-fastflow.sourceforge.net

Accelerator patterns and their composition

farm

pipe

farm{ pipe }

farm ; farm

D&C = farm + wrap

any variation of them requiring additional synch ...
11

http://mc-fastflow.sourceforge.net

Running example: denoiser variants

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

 thr 1

dispatching

myDetect

myDenoise

 thr n

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Farm(Pipeline(myDetect,myDenoise))

acceleratorY

display

gathering

myDetect

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Pipeline(myDetect,Map(myDenoise))

accelerator

Y

display

myDenoise
(CUDA)

 thr 1

dispatching

myDetect

myDenoise

 thr n

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Farm(Pipeline(myDetect, Map(myDenoise)))

acceleratorY

display

gathering

myDenoise
(CUDA)

myDenoise
(CUDA)

Changing the accelerator structure does not require re-writing business code (gray)
12

20 // FastFlow accelerated code
21 #define N 1024

22 long A[N][N],B[N][N],C[N][N];

23 int main() {
24 // < init A,B,C>
25

26 ↵ ::↵ farm<> farm(true /⇤ accel ⇤/);

27 std :: vector<↵ :: ↵ node ⇤> w;

28 for(int i=0;i<PAR DEGREE;++i)

29 w.push back(new Worker);

30 farm.add workers(w);

31 farm.run then freeze();

32

33 for (int i=0;i<N;i++) {
34 for(int j=0;j<N;++j) {
35 task t ⇤ task = new task t(i,j);

36 farm.o✏oad(task);

37 }
38 }
39 farm.o✏oad((void ⇤)↵ ::FF EOS);

40 farm.wait(); // Here join
41 }
42

43 // Includes
44 struct task t {
45 task t(int i ,int j) : i (i) , j(j) {}
46 int i ; int j ;};
47

48 class Worker: public ↵ :: ↵ node {
49 public: // O✏oad target service
50 void ⇤ svc(void ⇤task) {
51 task t ⇤ t = (task t ⇤)task;

52 int C=0;

53 for(int k=0;k<N;++k)

54 C += A[t�>i][k]⇤B[k][t�>j];

55 C[t�>i][t�>j] = C;

56 delete t;

57 return GO ON;

58 }
59 };

1 // Original code
2 #define N 1024
3 long A[N][N],B[N][N],C[N][N];
4 int main() {
5 // < init A,B,C>
6

7 for(int i=0;i<N;++i) {
8 for(int j=0;j<N;++j) {
9

10 int C=0;
11 for(int k=0;k<N;++k)
12 C += A[i][k]⇤B[k][j];
13 C[i][j]= C;
14

15 }
16 }
17 }

① ①

④

②

❸

❸

⑤

②

④

⑤

➽

➽

Se
lf-o

ffl
oa

din
g m

eth
od

olo
gy

13Original Accelerated

 FastFlow
as a programming model for

multi-core

14

ISSUES FOR EXASCALE ERA
FROM P. BECKMAN KEYNOTE

“Coarse grain concurrency is nearly exhausted”

“It is not about Flops, it is about data movement”

“Programming systems should be designed to support
fast data movement and enforce locality”

“Variable coherency & inter-socket messaging”

15

http://mc-fastflow.sourceforge.net

Grain: task farm with POSIX lock/unlock

0

2

4

6

8

2 3 4 5 6 7 8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

average execution time per task

16

http://mc-fastflow.sourceforge.net

Can we avoid locks?

 Under relaxed memory models, using CAS/atomic ops
lock-free data structures
they perform better than lock-based
they fence the memory and pay cache coherency reconciliation overhead

17

http://mc-fastflow.sourceforge.net

Lock vs CAS at fine grain (0.5 μS)

0

2

4

6

8

2 3 4 5 6 7 8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CASE C

W
1

W
2

W
n

18

http://mc-fastflow.sourceforge.net

Lock-free and CAS-free?

Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done

Producer-Consumer is inherently weaker with respect to Mutex
It does require the cooperation of partners whereas Mutex does not

Expressive enough to build a streaming (or dataflow)
programming framework

MPMC = SPSC + mediator threads

19

http://mc-fastflow.sourceforge.net

FastFlow is based on producer-consumer

Lock-free/fence-free non-blocking synchronisations
C++ STL-like implementation
thread-model agnostic (pthreads, QT, windods threads, ...)
compliant with other synchronisation mechanisms in the business code (e.g. locks and semaphores)

20

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

F
a
st
F
lo
w

Problem Solving
Environment

High-level
programming

Low-level
programming

Run-time
support

Hardware

Applications

E C

P C

Producer Consumerlock-free SPSC queue

SPMC MPSC

Wn

W1

Farm

input
stream

output
stream

E C

Wn

W1

D&C

uses
E

E

SPMC

C

MPSC

http://mc-fastflow.sourceforge.net

Lamport FIFO
1983

FastFlow SPSC queues

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

push_nonbocking(data) {
 if (NULL != buffer[head]) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {
 data = buffer[tail];
 if (NULL == data) {
 return EWOULDBLOCK;
 }
 buffer[tail] = NULL;
 tail = NEXT(tail);
 return 0;
}

FastFlow FIFO
(derived from P1C1)

(WMB)

head and tail are mutually
invalidated by producer

and consumer
1 cache miss every push

and pop (at least)

producer read/write head
consumer read/write tail

no misses

21

http://mc-fastflow.sourceforge.net

Medium grain (5 μS workload)

E C

W
1

W
2

W
n

22

http://mc-fastflow.sourceforge.net

Fine grain (0.5 μS workload)

E C

W
1

W
2

W
n

23

http://mc-fastflow.sourceforge.net

BioBITs

Good scalability (see the paper)

Lena* with 90% of noise is restored in 4 seconds
Next best result in literature is about 180 seconds

Lena Lombardy. Standard test image, Playboy magazine centerfold (top). Nov. 1972

AMD Magny-cour 4x12 cores

24

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net
http://en.wikipedia.org/wiki/Lenna,_Lombardy
http://en.wikipedia.org/wiki/Lenna,_Lombardy

ISSUES FOR EXASCALE ERA
FROM P. BECKMAN KEYNOTE

“Coarse grain concurrency is nearly exhausted”

more scalable than OpenMP, TBB, Cilk at fine grain

“It is not about Flops, it is about data movement”

inter-core communication latency ~7 ns on core2 2Ghz

“Programming systems should be designed to support fast data movement
and enforce locality”

FastFlow memory allocator is specifically designed to enhance locality in
streaming applications.

“Variable coherency & inter-socket messaging”

SPSC queue is designed to selectively disarm coherency. Queues can be
used to both pass pointers (zero-copy) o to copy messages in a message
passing fashion.

25

ISSUES FOR EXASCALE ERA
FROM P. BECKMAN KEYNOTE

“A computer language is not a computing model.”
“A library is not a computing model.”
“System programmers should use the techniques they advocate”

Data communication happen via both shared-memory and
messages. Synchronisations are realised via message-passing
(FIFO queues).

Synchronisation are local (no barriers) and determined by
high-level algorithmic patterns. Data races are identified and
solved at design time.

FastFlow memory allocator has been developed in FastFlow

26

Running example
demo

27

http://mc-fastflow.sourceforge.net

Thank you! Questions?
FastFlow: an open source project

http://mc-fastflow.sourceforge.net
Many contributes from the open source community worldwide
Over 25K website visits, 6K downloads form 120 different countries in 1 year and half
HPC advisoryboard academic award 2011 (announced at Intl. Supercomputing 2011)
ParaPhrase STREP (FWP7 - starting Oct 2011, 3 years)
tested on Linux, Mac, Windows XP/7 - Intel core2, AMD Opteron, PPC, ARM (ongoing)

Many existing benchmarks and applications
C4.5, k-means, pbzip-ff, smith-waterman, Stochkit-ff, Parallel MonteCarlo, N-queens ...
Many on my laptop, just ask if you are interested

28

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

http://mc-fastflow.sourceforge.net

Related Work: Lock-free and CAS-free
Single-Producer-Single-Consumer FIFO queues

Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)
Higham and Kavalsh. 1997 ISPAN (P1C1 - TSO + proof - passive)
Giacomoni et al. 2008 PPoPP (TSO + cache slipping - passive)

Multiple-Producers-Multiple-Consumers FIFO queues
with CAS (two of them) - Michael and Scott (PODC96)

 Also implemented in FastFlow, require deferred reclamation/hazard pointers to avoid ABA problem

without CAS - passive ➠ Cannot be done
without CAS - active ➠ FastFlow

Extending the taxonomy with locking algorithms is clearly useless
29

