EuroPar 2011
Bordeaux - France
1st Sept 2001

Accelerating icode on mulfi-cores with FastFlow

Marco Aldinucci
Computer Science Dept. - University of Torino (Turin) - Italy

Massimo Torquati and Marco Danelutto
Computer Science Dept. - University of Pisa - Italy

Massimiliano Meneghin
IBM Research, Ireland

Peter Kilpatrick
Queen’s University Belfast, U.K.

http:/ /mc-fastflow.sourceforge.net

Qutline

' Porting of existing sequential codes onto multi-core

— a motivational example (edge-preserving denoiser)

 Offloading and FastFlow accelerators

— methodology and programming framework supporting fine-grain parallel codes

' FastFlow programming model

— Design and Implementation
— Experimental evaluation

' Demo & Conclusion

http:/ /mc-fastflow.sourceforge.net

Running example: edge-preserving denoiser

#1nclude <opencv/highguti.h>
#1include <opencv/cv.h>

int main(int argc, char *argv[]) {
CvCapture *capture;
IplImage * frame,clean_frame;
char key;
vector<noisy_t> noisy;
cvNamedWindow("Video", CV_WINDOW_AUTOSIZE);
capture = cvCreateCameraCapture(CV_CAP_ANY);
//capture = cvCreateFileCapture("/path/to/your/video/test.avi");
while(true) {
frame = cvQueryFrame(capture); // get a frame from device

noisy = myDetect(frame); // detect noisy pixels
clean_frame = myDenoise(frame,noisy); // denoise the frame
cvShowImage 1deo , clean_frame); // Show the denoiLsed frame

key = cviNaitKey(100);
¥

cvReleaseCapture(&capture);
cvDestroyWindow("Video");

¥
D —— e ———————

e W http:/ /mc-fastflow.sourceforge.net

Application performance

~ myDetect and myDenoise filters are slow and exhibits a different
computing time

— Detect is O(size), Denoise is O(size “noise% “image__complexity)

' in principle the app can be parallelised exploiting

— data parallelism on filters

— pipeline/stream parallelism among capture, the two filters, and display

in pracice Intel’s opencv is not fully thread-safe (signals)

— capture and display should be run in the main thread

— e.g. embedding the app in a TBB not easy (highgui cannot be used), the manual
parallelisation via pthreads crash, ...

g

Wy http:/ /mc-fastflow.sourceforge.net

Easy parallelisation of existing codes

—1 offloading

— onto HW accelerator

Wy http:/ /mc-fastflow.sourceforge.net

Easy parallelisation of existing codes

1 offloading

— onto other cores and
accelerators

Parallelisation via offloading onto

structured software accelerator

http:/ /mc-fastflow.sourceforge.net

Accelerator & self-offloading

——1 Target the parallelisation of legacy code
— No need to redesign the application; local intervention in the code

——{ Transform loops and D&C in streaming then offload them into
dynamically created accelerators using spare cores

—— Parallelising requires management of data dependency

— True dependency: fast synchronisation via FastFlow
— False dependency (Write-Read, Write-Write): remove

— Variable streamization (i.e. dynamic privatisation onto a stream). More powerful than expansion (do-across

4 N N N

Original Privatization Expansion
for (1=0; i<N;++i) { || for (i=0;i<Ni+-+i) { for (1=0;i<Ni+-+i) {
temp=Al[i]+2; private temp=A][i|+2; templ[i]|=A[i]+2;
B[i]=2*temp; B[i]=2*temp; B[i]=2*templi];
} }

8

http:/ /mc-fastflow.sourceforge.net

Accelerator & self-offloading

 FastFlow-based stream-oriented parallel accelerators

 Source of stream parallelism

— Natural

— external devices, network: antenna, audio/video, medical instruments, ...

— Produced via streamization from recursion/iteration

— streamization of recursion

— streamization of loops without dependencies (do-independent)

— streamization of loops with dependencies (do-across)

Natively '
arallel
FF;_S’[HOW Accelerator
applications Self-offloading

FastFlow
Composable parametric
patterns: pipeline, farm, ...

Multi-core and many-core
cc-UMA or cc-NUMA

10

http:/ /mc-fastflow.sourceforge.net

http:/ /mc-fastflow.sourceforge.net

Accelerator patterns and their composition

farm —‘(:/\.—
| —0—0—
farm{) &O\

—

farm : farm —0< ./r—(.;ﬁ—

 D&C = farm + wrap —.<‘\2—

any variation of them requiring additional synch ...

1

S H http:/ /mc-fastflow.sourceforge.net

unique thr main thr stream of independent frames
>| >| "
(capture | capture
f myDetect \ RTTTTTIvITm | myDetect myDetect
("_—-I'—'"'-< "‘_'. Ofﬂoac“ng '_“:
myDenoise 1 :
\._i_l____z N 2 myDenoise = myDenoise
s : \ T< (CUDA) (CUDA)
display display
v Y - accelerator
Sequential

Changing the accelerator structure does not require re-writing business code (gray)
12

1 // Original code 20 // FastFlow accelerated code

2 #define N 1024 —l 21 F#Fdefine N 1024

3 long A[N]([)N‘][,B[N][N],C[N][N]; @ @ zz :z?gmi[iljl]([)N%B[N][N],C[N][N];

4 int main

5 // < init A,B,C>] 24 // < init A,B,C>

- 25

7 for(int i=0;i<N;++i) { = 26 ff :: ff farm<> farm(true /* accel x/);

] for(int j=70;j<’N;—|——|—j) { @ 27 std::vector<ff:: ff_node x> w;

. — 28 for(int i=0;i<PAR_DEGREE;++i)

10 int _C=0; _l 29 w.push_back(new Worker);

11 for(int k=0;k<N;+-+k '3) 30 farm.add_workers(w);

19 _C += A[i][k]*B[K][j |; J 31 farm.run_then_freeze();

13 Cli][j]=-C; 2

14 L] | 33 for (int i=0;i<N;i++) {

5} @ @ s for(int j=0;<Ni++)) {

16} N 35 task_t x task = new task_t(i,j);

17} - 36 farm.offload(task); »
6), @‘ 57} —
- o 38 }

39 farm.ofHoad((void *)ff :: FF_EOS);
40 farm.wait(); // Here join

41 }

42

43 // Includes

44 struct task_t {

45 task_t(int i,int j):i(i),j(j) {}
46 int i; int j;};

47

48 class Worker: public ff:: ff_node {
49 public: // Offload target service
3 50 void * svc(void xtask) {

r@'l

-
(@ p
A=
S
=
S
1K e
r—
(a b
—
(@ p
.=
-
(-
S
| e
G
(e
e
(a b
)

51 task_t * t = (task_t =*)task;
52 int _C=0;
@ 53 for(int k=0;k<N;++k)
54 C += A[t—>i][k]*B[k][t—>]];
55 Clt—>i][t—>j] = -C;
o0 uelele U,
57 return GO_ON;

Original ,, = »* Accelerated

FastFlow

as a programming model for
mulfi-core

14

ISSUES FOR EXASCALE ERA
FROM P. BECKMAN KEYNOTE

® “Coarse grain concurrency is nearly exhausted”

® “It is not about Flops, it is about data movement”

® “Programming systems should be designed to support
fast data movement and enforce locality”

® “Variable coherency & inter-socket messaging”

I5

http:/ /mc-fastflow.sourceforge.net

Grain: task farm with POSIX lock /unlock

— |deal O 50puS O 5pS 0.5 pS

Numdber of Cores

http:/ /mc-fastflow.sourceforge.net

Can we avoid locks?

~ Under relaxed memory models, using CAS/atomic ops

— |ock-free data structures
— they perform better than lock-based
— they fence the memory and pay cache coherency reconciliation overhead

17

http:/ /mc-fastflow.sourceforge.net

Lock vs CAS at fine grain (0.5 pS)

— Ideal O POSIX lock O (AS

Number of Cores

http:/ /mc-fastflow.sourceforge.net

Lock-free and CAS-free?

Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done

— Producer-Consumer is inherently weaker with respect to Mutex
— It does require the cooperation of partners whereas Mutex does not

| Expressive enough to build a streaming (or dataflow)
programming framework

— MPMC = SPSC + mediator threads

19

http:/ /mc-fastflow.sourceforge.net

Applications Efficient applications for multicore and manycore) uses
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

D 7~
Problem Solving Autonomic | | Simulation || Accelerator e D&C
Environment Behav.Skeletons Montecarlo || self-offloading || -~ . \

High-level A Streaming networks patterns :/’ - il V\./@\
programming Skeletons: Pipeling, farm, D&C, ... inpu? . e'output

RN l 4
:

Il

_ w
=l r : : — \ Stream Farm | Stream
Low-level | T Arbitrary streaming networks (building blocks)
programming *%' Lock-free SPSC, SPMC, MPSC, MPMC queues "-\.\ @
Run-time Simple streaming networks (building blocks) [@ : . L1
support y Lock-free SPSC queues and general threading model .\ | SPMC MPSC

N EEEEEEI———————————m————————————— |

PRI IAN Multi-corg and many-core . = T @] @
cc-UMA or cc-NUMA featuring sequential or weak consistency

lock-free SPSC queue Producer Consumer

— Lock-free /fence-free non-blocking synchronisations
— (++ STL-like implementation
— thread-model agnostic (pthreads, QT windods threads, ...)

— compliant with other synchronisation mechanisms in the business code (e.g. locks and semaphores)
20

Wk http://mc-fastflow.sourceforge.net

FastFlow SPSC queues

if (NEXT(head) == tail) { _ if (NULL != buffer[head]) { '

J U U U SA) U J U L) T AL- U [}

} Wyl B N CWMB)
buffer[head] = data; h " buffer[head] = dats;
head = NEXT(head); ead and tailfare mutually head = NEXT(head); I
return 0; invalidated py producer return 0; producer read /write head
by ks L
and cofsumer consumer read {write tail
pop_nonblocking(data) { 1 cache mis every pUSh pop_nonblocking(data) [no mMisses
if (head == tail) { _), if (NULL == data) {
return EWOULDBLOCK; return EWOULDBLOCK;
} ¥
data = buffer[tail]; buffer[tail] = NULL;
tail = NEXT(tail); tail = NEXT(tail);
return 0; return 0;
¥ ¥
Lamport FIFO FastFlow FIFO

1983 (derived from P1C1)

21

WS http:/ /mc-fastflow.sourceforge.net

8 L 1 1 I L 1
Ideal

FastFlow ==l
2 L TBE ==l
OpenMP

Cilk —

o
=
e
Q
]
o
()

N. of cores

W http://mc-fastflow.sourceforge.net

Ideal 400004
FastFlow =i
2 L TBB wiiow

OpenMP
Cilk ==
6 F 4
St I
Q.
=
@ 4t '
@
Q.
(W
3 F |

13 N. of cores

http:/ /mc-fastflow.sourceforge.net

Good scalability (see the paper)

AMD Magny-cour 4x12 cores

50 =
45 | 10% no%e --------
30% noise =
40 | S0% noise = 4P
70% noise --a-- hY
g 35 SUenmome T e
c -.
N T T T T T = R ™
o 25}
= R SR P ot UL Lt B s
g 20 " -t
D 45|
10 |
5 -
0

0 5 10 15 20 25 30 35 40 45 S0 [ena30% - Restored Lena 50% - Restored Lena 90% - Restored
N. of worker threads (parallelism degree) PSNR=35.1 MAE=1.2 PSNR=31.8 MAE=2.3 PSNR=22.5 MAE=11.3

Lena™ with 90% of noise is restored in 4 seconds
Next best result in literature is about 180 seconds

Lena Lombardy. Standard test imdge, Playboy magazine centerfold (top). Nov. m 51oBITs

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net
http://en.wikipedia.org/wiki/Lenna,_Lombardy
http://en.wikipedia.org/wiki/Lenna,_Lombardy

ISSUES FOR EXASCALE

ERCH e e

e “Coarse grain concurrency is nearly exhausted”
* more scalable than OpenMP, TBB, Cilk at fine grain
® “ltis not about Flops, it is about data movement”
“ inter-core communication latency ~7 ns on core2 2Ghz

® “Programming systems should be designed to support fast data movement
and enforce locality”

* FastFlow memory allocator is specifically designed to enhance locality in
streaming applications.

® “Variable coherency & inter-socket messaging”

© SPSC queue is designed to selectively disarm coherency. Queues can be
used to both pass pointers (zero-copy) o to copy messages in 2 message
passing fashion.

2%

ISSUES FOR EXASCALE ERA

® “A computer language is not a computing model.”
“A library is not a computing model.”
“System programmers should use the techniques they advocate”

¢ Data communication happen via both shared-memory and
messages. Synchronisations are realised via message-passing
(FIFO queues).

© Synchronisation are local (no barriers) and determined by
high-level algorithmic patterns. Data races are identified and

solved at design time.

© FastFlow memory allocator has been developed in FastFlow

26

Running example

demo

i Wes http:/ /mc-fastflow.sourceforge.net

Thank you! Questions?

 FastFlow: an open source projec HPC

ADVISORY COUNCIL

— http://mcdastflow.sourceforge.net

— Many contributes from the open source community worldwide
— Over 25K website visits, 6K downloads form 120 different countries in 1 year and half

— HPC advisoryboard academic award 2011 (announced af Intl. Supercomputing 2011)

— ParaPhrase STREP (FWP7 - starting Oct 2011, 3 years)
— tested on Linux, Mac, Windows XP/7 - Intel core2, AMD Opteron, PPC, ARM {ongoing)

~ Many existing benchmarks and applications

— (4.5, k-means, pbzip-tf, smith-waterman, Stochkit-ff, Parallel MonteCarlo, N-queens ...

— Many on my laptop, just ask if you are interested

28

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

W http:/ /mc-fastflow.sourceforge.net

| Related Work: Lock-free and CAS-free

 Single-Producer-Single-Consumer FIFO queues

— Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)
— Higham and Kavalsh. 1997 ISPAN (P1C1 - TSO + proof - passive)
— Giacomoni et al. 2008 PPoPP (TS0 + cache slipping - passive)

~ Multiple-Producers-Multiple-Consumers FIFO queues
— with CAS (two of them) - Michael and Scott (POD(96)

— Also implemented in FastFlow, require deferred reclamation/hazard pointers to avoid ABA problem
— without CAS - passive " Cannot be done
— without CAS - active m FastFlow

~ Extending the taxonomy with locking algorithms is clearly useless

29

