
High-level parallel programming:
(few) ideas for challenges in formal methods

Marco Aldinucci
Computer Science Dept. - University of Torino (Turin) - Italy

a joint work with

Massimo Torquati and Marco Danelutto
Computer Science Dept. - University of Pisa - Italy

Massimiliano Meneghin
IBM Technology Campus, Dublin Software Lab, Ireland

Peter Kilpatrick
Queen’s University Belfast, U.K.

COST Action IC701
Limerick - Republic of Ireland

21st June 2011

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Outline
Multi-core and many-core with efficiency in mind

Memory is the problem. Focus on it.

Low-level parallel programming. Locks, CAS, send/receive, ...
Mutual exclusion & Producer Consumer
Producer Consumer, the FastFlow way

High-level programming & FastFlow
Architecture and implementation
Techniques and performance

In the light of formal verification (as far I’ll succeed ...)
allocator
self-offloading and software acceleration technique

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Performances: motivations
(all of them from real industrial applications)
Throughput

High-frequency trading (e.g. ION trading)
1ms of advantage on sell/buy data stream may generate 1MEuro

Deep packet inspection on fast networks 1-10GB/s (e.g. IBM, CISCO)
analysis 10 packet per ms

High-throughput processes (e.g. devstudio.it, adobe, ...)
rendering and printing 50MPixels/inch, encoding/decoding, real-time encryption, ...

Multimedia streams, surveillance camera, games, ...

Latency
 Industrial processes control (e.g. Siemens)

Camera

Latency

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

E.g. task farm with POSIX lock/unlock

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μSE C

W
1

W
2

W
n

average execution time per task

4

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Lock vs CAS at fine grain (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CASE C

W
1

W
2

W
n

Monday, July 4, 2011

Programming at the
low-level

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

the MPI code
#include <stdio.h>
#include "mpi.h"
#define MAXPROC 8 /* Max number of procsses */
#define NAMELEN 80 /* Max length of machine name */
#define LENGTH 24 /* Lengt of send buffer is divisible by 2, 4, 6 and 8 */

main(int argc, char* argv[]) {
 int i, j, np, me;
 const int nametag = 42; /* Tag value for sending name */
 const int datatag = 43; /* Tag value for sending data */
 const int root = 0; /* Root process in scatter */
 MPI_Status status; /* Status object for receive */

 char myname[NAMELEN]; /* Local host name string */
 char hostname[MAXPROC][NAMELEN]; /* Received host names */

 int x[LENGTH]; /* Send buffer */
 int y[LENGTH]; /* Receive buffer */

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_size(MPI_COMM_WORLD, &np); /* Get nr of processes */
 MPI_Comm_rank(MPI_COMM_WORLD, &me); /* Get own identifier */

 gethostname(&myname, NAMELEN); /* Get host name */

 if (me == 0) { /* Process 0 does this */

 /* Initialize the array x with values 0 .. LENGTH-1 */
 for (i=0; i<LENGTH; i++) {
 x[i] = i;
 }

 /* Check that we have an even number of processes and at most MAXPROC */
 if (np>MAXPROC || np%2 != 0) {
 printf("You have to use an even number of processes (at most %d)\n",
MAXPROC);
 MPI_Finalize();
 exit(0);
 }

 printf("Process %d on host %s is distributing array x to all %d processes\n
\n", \
! me, myname, np);

 /* Scatter the array x to all proceses, place it in y */
 MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \
! ! MPI_COMM_WORLD);

 /* Print out own portion of the scattered array */
 printf("Process %d on host %s has elements", me, myname);
 for (i=0; i<LENGTH/np; i++) {
 printf(" %d", y[i]);
 }
 printf("\n");

 /* Receive messages with hostname and the scattered data */
 /* from all other processes */
 for (i=1; i<np; i++) {
 MPI_Recv (&hostname[i], NAMELEN, MPI_CHAR, i, nametag, MPI_COMM_WORLD,
&status);
 MPI_Recv (&y, LENGTH/np, MPI_INT, i, datatag, MPI_COMM_WORLD, &status);
 printf("Process %d on host %s has elements", i, hostname[i]);
 for (j=0; j<LENGTH/np; j++) {
! printf(" %d", y[j]);
 }
 printf("\n");
 }

 printf("Ready\n");

 } else { /* all other processes do this */

 /* Check sanity of the user */
 if (np>MAXPROC || np%2 != 0) {
 MPI_Finalize();
 exit(0);
 }

 /* Receive the scattered array from process 0, place it in array y */
 MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \
! ! MPI_COMM_WORLD);
 /* Send own name back to process 0 */
 MPI_Send (&myname, NAMELEN, MPI_CHAR, 0, nametag, MPI_COMM_WORLD);
 /* Send the received array back to process 0 */
 MPI_Send (&y, LENGTH/np, MPI_INT, 0, datatag, MPI_COMM_WORLD);

 }

 MPI_Finalize();
 exit(0);
}

Monday, July 4, 2011

Additional
multicore-specific issues

Monday, July 4, 2011

[< 2004] Shared Font-Side Bus
(Centralized Snooping)

10

Monday, July 4, 2011

[2005] Dual Independent Buses
(Centralized Snooping)

11

Monday, July 4, 2011

[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)

12

Monday, July 4, 2011

[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)

12

Monday, July 4, 2011

[2009] QuickPath
(MESI-F Directory Coherence)

13

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

This and next generation multi-cores

Exploit cache coherence
and it is likely to happens also in the next future

Memory fences are expensive
Increasing core count will make it worse
Atomic operations does not solve the problem (still fences)

Fine-grained parallelism appear hard to achieve
I/O bound problems, High-throughput, Streaming, Irregular DP problems
Automatic and assisted parallelization

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Two features - two problems

Memory/Cache Coherence
Deal with multiple replicas of the same location in different caches

Memory Consistency
Deal with the ordering in which writes
and reads at different locations
take effect in memory (issued by either
the same or different processors/cores)
x86 (TSO), PPC (WO), alpha (RC), ...

write(A,3)

write(A,1)
Thread 1

Thread 2
read(A,?)

15

Monday, July 4, 2011

Concurrent programming
basic mechanisms and paradigms

16

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Basic low-level interaction models

low-level synchronisation in the shared memory model
Mutual Exclusion (mutex)

typically used as basic building block of synchronisations

Producer Consumer

they are not equally demanding
Mutual Exclusion is inherently more complex since requires deadlock-freedom

require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

Dekker and Bakery requires Sequential Consistency (++)

Producer Consumer is a cooperative (non cyclic) process

17

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Bakery (Lamport 1976)

Works for n threads, require SC (or PRAM Consistency)
Deadlock-free, fair (first come first served), O(n)

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Are classic mutex working on a x86?

No!
try them, they are going to fail half of the times

So, what can we do?
“transactional” operations (CAS, LL/SC)

extend the “register” model with “transactional” operations (CAS)
Compare-And-Swap, Test-And-Set, Load-Linked-Store-Conditional

what do they do?
execute a read AND a write as an atomic operation

acts a memory fences, all in-flight operations are committed before proceeding

19

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Lock with CAS? Easy job.
volatile int lock = 0;
void Critical() {
 while (TestAndSet(&lock) == 1); // acquire lock critical section //only one thread can be in this section at a time lock = 0 // release lock
}

20

Atomic operations are memory fences
each atomic operation requires the reconciliation of caches
significant effect on performance

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Can we avoid locks?

Yes, in many ways using CAS (under relaxed memory models)
actually building concurrent data structures accessed via CAS
they perform better than locks-based, but still they fence the memory

and what about lock-free, CAS-free?
Mutex cannot, Producer Consumer can be done

also under some relaxed memory model, not all of them, however

notice that Producer Consumer is inherently weaker with respect to Mutex because it does requires the
cooperation of partners whereas Mutex is required to be deadlock-free

21

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Lamport & FastFlow FIFO queues

Proved to be correct under SC

doesn’t work under weaker models

Pushing lot of pressure on coherence
subsystem because both producer and
consumer need to share both head and
tail index of the queue

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

22

Lamport FIFO
1983

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Finally, FastFlow SPSC queues

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

Lamport FIFO

push_nonbocking(data) {
 if (NULL != buffer[head]) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {
 data = buffer[tail];
 if (NULL == data) {
 return EWOULDBLOCK;
 }
 buffer[tail] = NULL;
 tail = NEXT(tail);
 return 0;
}

FastFlow FIFO

(WMB)

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Finally, FastFlow SPSC queues

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

Lamport FIFO

push_nonbocking(data) {
 if (NULL != buffer[head]) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {
 data = buffer[tail];
 if (NULL == data) {
 return EWOULDBLOCK;
 }
 buffer[tail] = NULL;
 tail = NEXT(tail);
 return 0;
}

FastFlow FIFO

WMB enforce store
ordering on successive

cells/indexes on non-TSO.
Also it enforces

transitivity in pointer
traversal.

(WMB)

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Lock-free and CAS-free (fence-free)
Single-Producer-Single-Consumer FIFO queues

Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)
Higham and Kavalsh. P1C1 (Rel. Cons. (e.g. TSO)+proof - passive)
Giacomoni et al. 2008 PPoPP (TSO + cache slipping - passive)

Multiple-Producers-Multiple-Consumers FIFO queues
with CAS (two of them) - Michael and Scott (PODC96)

 Also implemented in FastFlow, require deferred reclamation (expensive) to avoid ABA problem

without CAS - passive ! Cannot be done
without CAS - active ! FastFlow

We now know that augmenting the picture with locks will be “useless”

Monday, July 4, 2011

High-level patterns &
FastFlow

25

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Pattern-based approach: rationale

Abstract parallelism exploitation pattern by parametric code
e.g. higher order function, code factories, C++ templates, ...
Hopefully, in such a way they can composed and nested as programming
language constructs

Provide user with mechanisms to specify the parameters
functional (seq code) and extra-functional (QoS) parameters

Provide state-of-the-art implementation of each parallelism
exploitation pattern

26

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

SPMC and MCSP via SPSC + control
SPMC(x) fence-free queue with x consumers

One SPSC “input” queue and x SPSC “output” queues
One flow of control (thread) dispatch items from input to outputs

MPSC(y) fence-free queue with y producers
One SPSC “output” queue and y SPSC “input” queues
One flow of control (thread) gather items from inputs to output

x and y can be dynamically changed
MPMC = MCSP + SPMC

Just juxtapose the two parametric networks
27

E

SPMC

C

MPSC

MPMC

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

FastFlow: architecture

High-level programming
Lock-free/fence-free non-blocking synchronisations
C++ STL-like implementation

28

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

F
a
st
F
lo
w

Problem Solving
Environment

High-level
programming

Low-level
programming

Run-time
support

Hardware

Applications

E C

P C

Producer Consumerlock-free SPSC queue

SPMC MPSC

Wn

W1

Farm

input
stream

output
stream

E C

Wn

W1

D&C

uses
E

E

SPMC

C

MPSC

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

E.g. farm (a.k.a. master-worker)

Common paradigm
Model foreach and Divide&Conquer
Can be used to build data-flow engine
Exploit it as a high-order language construct

A C++ template factory exploiting highly optimised implementation

E C

W
1

W
2

W
n

schedule
tasks

workers
(compute something)

gather
results

29

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Medium grain (5 μS workload)

E C

W
1

W
2

W
n

30

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Pattern composition

C++ STL-like implementation
used to generatively compile skeletons into streaming networks
fully memory barrier free implementation

High-level pattern compose with ; and { }
their implementation as parametric streaming networks (graphs)
performance can be optimised as in streaming graphs (network of queues)

31

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Patterns, and they comp. implementation

farm

pipe

farm{ pipe }

farm ; farm

D&C = farm + wrap

any variation of them requiring additional synch ...

Monday, July 4, 2011

Many open problems

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Many open problems
1) Mechanisms e concurrency theory

new queues and data containers, new allocation techniques, ...
cc-NUMA: mapping tools; smart-network support (RDMA)

2) Formal Quantitative
performance analysis, optimisation, ...

3) Formal Qualitative
correctness, protocol proofs, ...

4) Design and tools
language evolution, compiler evolution, new features, meta-programming technique
evolution, staged compilation, adaptive support

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Example: FF-allocator

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Example: FF-allocator

OS
allocator

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Example: FF-allocator

faster than posix, hoard, TBB
unpublished, but available on sourceforge

FF allocator

The graph is now cyclic
(with bound queues)

!Deadlock

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Possible solutions
Use unbound queue to “break” cyclic dependencies

unbound queue is slower than bound queue

Currently
generate streaming network by growing a graph (via C++ class/templates)
turn bound queue into unbound in case cycles may appear

However
patterns can be extended by the progrmmer (using standard OO)
correctness is not guaranteed (unless using all unbound queues)
The exploitation of unbound queue is suboptimal

break the graph into DAGs connected by an unbound queue

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Is this complexity worth?
From performance viewpoint, yes

Core-to-core synchronisation latency
less than 20 clock cycles

real speedup achieved even synchronising every 10 ns on a standard core2 @ 2.5Ghz

a single CAS (atomic op) o cache miss is an order of magnitude more expensive

Throughput
the synchronisation itself does not introduce additional cache misses

depend on access patterns, but anyway close to the theoretical limit

Faster than TBB, OpenMP, Cilk on all applications we tested

From design viewpoint
we achieved the parallelisation of third party complex legacy codes in few days
C4.5, k-means,

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Accelerator & self-offloading
Target the parallelisation of legacy code

No need to redesign the application
Local intervention in the code

Variable streamization (i.e. dynamic privatization onto a stream)
Transform loops and D&C in streaming then offload them into dynamically
created (pattern-based) software accelerators using spare cores
More powerful than expansion. Also do-across cycles can be managed

38

Original Privatization Expansion
...
for (i=0; i<N;++i) {

temp=A[i]+2;
B[i]=2∗temp;

}

...
for (i=0;i<N;++i) {

private temp=A[i]+2;
B[i]=2∗temp;

}

...
for (i=0;i<N;++i) {

temp[i]=A[i]+2;
B[i]=2∗temp[i];

}

Monday, July 4, 2011

20 // FastFlow accelerated code
21 #define N 1024
22 long A[N][N],B[N][N],C[N][N];
23 int main() {
24 // < init A,B,C>
25

26 ff ::ff farm<> farm(true /∗ accel ∗/);
27 std :: vector<ff :: ff node ∗> w;
28 for(int i=0;i<PAR DEGREE;++i)
29 w.push back(new Worker);
30 farm.add workers(w);
31 farm.run then freeze();
32

33 for (int i=0;i<N;i++) {
34 for(int j=0;j<N;++j) {
35 task t ∗ task = new task t(i,j);
36 farm.offload(task);
37 }
38 }
39 farm.offload((void ∗)ff ::FF EOS);
40 farm.wait(); // Here join
41 }
42

43 // Includes
44 struct task t {
45 task t(int i ,int j) : i (i) , j(j) {}
46 int i ; int j ;};
47

48 class Worker: public ff :: ff node {
49 public: // Offload target service
50 void ∗ svc(void ∗task) {
51 task t ∗ t = (task t ∗)task;
52 int C=0;
53 for(int k=0;k<N;++k)
54 C += A[t−>i][k]∗B[k][t−>j];
55 C[t−>i][t−>j] = C;
56 delete t;
57 return GO ON;
58 }
59 };

1 // Original code

2 #define N 1024
3 long A[N][N],B[N][N],C[N][N];
4 int main() {
5 // < init A,B,C>
6

7 for(int i=0;i<N;++i) {
8 for(int j=0;j<N;++j) {
9

10 int C=0;
11 for(int k=0;k<N;++k)
12 C += A[i][k]∗B[k][j];
13 C[i][j]= C;
14

15 }
16 }
17 }

! !

"

#

$

$

%

#

"

%

&

&

Se
lf-o

ffl
oa

din
g e

xa
mp

le

39

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

Is correctness guaranteed?
Lock-free and fence-free mechanism correctness

Is your machine TSO? Do you need enforce WriteBarriers on pointer traversal?
Is the dynamic memory allocation suffering from ABA problem?
Proving correctness requite to model write and read

Offloading, interesting correctness issues
pointers should be managed as values (with possible read-only aliasing)
data-hazards analysis (w→w, r → w, w → r)

Huge demand for static and dynamic analysis tool
but not just theoretical tools ...

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

No conclusions! We just started. Thank you.

FastFlow: an open source project
http://mc-fastflow.sourceforge.net
Many contributes from the open source community worldwide
Over 25K website visits, 6K downloads form 120 different countries in 1 year and half

Currently supported by
HPC advisory board academic award 2011 (announced at Supercomputing 2011)
ParaPhrase STREP (FWP7 - 3.5 MEuro, starting Oct 2011, 3 years)
BioBITS (Italian Project, Regione Piemonte, 2009-2011)

Many existing benchmarks and applications
C4.5, k-means, pbzip-ff, smith-waterman, Stochkit-ff, Parallel MonteCarlo, N-queens ...
Many on my laptop, just ask if you interested

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

Ide
as

 an
d .

..

42

Monday, July 4, 2011

