COST Action IC701
Limerick - Republic of Ireland
21st June 2011

Hign-level parallel programming:
Tew) ideas tor.cnallengesiinrormal methods

Marco Aldinucci
Computer Science Dept. - University of Torino (Turin) - Italy

a joint work with

Massimo Torquati and Marco Danelutto
Computer Science Dept. - University of Pisa - Italy

Massimiliano Meneghin
IBM Technology Campus, Dublin Software Lab, Ireland

Peter Kilpatrick
Queen’s University Belfast, U.K.

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

Qutline

——1 Multi-core and many-core with efficiency in mind

— Memory is the problem. Focus on it.

Low-level parallel programming. Locks, CAS, send/receive, ...

— Mutual exclusion & Producer Consumer

— Producer Consumer, the FastFlow way

High-level programming & FastFlow

— Architecture and implementation

— Techniques and performance

——1 In the light of formal verification (as far I'll succeed ...)

— allocator
— self-offloading and software acceleration technique

Monday, July 4, 2011

SR http:/ /mc-fastflow.sourceforge.net

 Performances: mofivations

(all of them from real industrial applications)

 Throughput
— High-frequency trading (e.g. ION trading)

— 1ms of advantage on sell/buy data stream may generate 1MEuro

— Deep packet inspection on fast networks 1-10GB/s (e.g. IBM, (ISCO)

— analysis 10 packet per ms

— High-throughput processes (e.g. devstudio.it, adobe, ...)

— rendering and printing 50MPixels/inch, encoding/decoding, real-time encryption, ...

Latency

— Multimedia streams, surveillance camera, games, ... < -=22- L

Camera

Latency

— Industrial processes control (e.g. Siemens)

Monday, July 4, 2011

4/; 7 http://mc-fastflow.sourceforge.net

E.q. task farm with POSIX lock/unlock

— |deal O 50pS O 5pS 0.5 pS

0 — __ & Wt = -
2 3 d 5 6 / 8

Number of Cores

Monday, July 4, 2011

X
$e=3%

BN /33 Mg,
:(KA ’}E m

http:/ /mc-fastflow.sourceforge.net

Lock vs CAS at fine grain (0.5 pS)

— Ideal O POSIX lock O (AS

2 3 / 5 6 / 8

Number of Cores

Programming af the

low-level

Yo http:/ /mc-fastflow.sourceforge.net

puter, then gath

Monday, July 4, 2011

WS http:/ /mc-fastflow.sourceforge.net

puter, then gather

Monday, July 4, 2011

W http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

WS http:/ /mc-fastflow.sourceforge.net

puter, then gather

Monday, July 4, 2011

W http://mc-fastflow.sourceforge.net

Scatter, computer, then gather

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

the MPI code

#include <stdio.h>

. 1 " L .h" . L
S e /* Print out own portion of the scattered array */

#define MAXPROC 8 /* Max number of procsses */ | n r

#define NAMELEN 80 /% Maz léngth lof machine Iname [/ printf ("Process %d on host %s has elements”, me, myname);
i=0; i< ; i++

#define LENGTH 24 /* Lengt of send buffer is divisible by 2, 4, 6 and 8 */ e L IR E R e B b

printf(" 24", y[il);

}

main(int argc, char* argv[]) { print£("\n");
14

int i, j, np, me;

const int nameta = 42; * Ta alue for sendin ame * ! .
P % ALE 1 / 4 hind % Navilt /* Receive messages with hostname and the scattered data */
const int datatag = 43; /* Tag value for sending data */
I . /* from all other processes */
const int root = 0; /* Root process in scatter */ for (i=1; i<np; i++) {
MPI ; * ' £ ive * I n y ! :
L A T AR P PrES RS FRSSiis Il MPI_Recv (&hostname[i], NAMELEN, MPI_CHAR, i, nametag, MPI_COMM_WORLD,

tat b

char myname[NAMELEN] ; /* Local host name string */ b

MPI_Recv (&y, LENGTH/np, MPI_INT, i, datatag, MPI_COMM_WORLD, &status);
printf ("Process %d on host %s has elements", i, hostname[i]);
for (j=0; j<LENGTH/np; j++) {

char hostname[MAXPROC] [NAMELEN]; /* Received host names */

int x[LENGTH]; /* Send buffer */ rintf(" %d" i1);

int y[LENGTH]; /* Receive buffer */ } R r Y33

MPI_Init(&argc, &argv); /* Initialize MPI */ } s PE
MPI_Comm_size(MPI_COMM WORLD, &np); /* Get nr of processes */

MPI_Comm_rank (MPI_COMM _WORLD, &me); /* Get own identifier */ Lot | "ReAEy D 1

gethostname (&myname, NAMELEN) ; /* Get host name */

el) 24 53 b PARSNS SN EH L Ltia by } else { /* all other processes do this */

/* Check sanity of the user */
if (np>MAXPROC || np%2 != 0) {
MPI_Finalize();
exit (0);
}

/* Initialize the array x with values 0 .. LENGTH-1 */
for (i=0; i<LENGTH; it++) {
x[i] = i;

}

* Check that have a mber of pr sses and at st MAXPROC *) AR
/ T A Nl e i N R b i 1 / /* Receive the scattered array from process 0, place it in array y */

if >MAXPR 2 1=
] (?P : el ee N4 b A . MPI_ Scatter(&x, LENGTH/np, MPI_ INT, &y, LENGTH/np, MPI_ INT, root, \
printf ("You have to use an even number of processes (at most %d)\n", | MPI COMM WORLD); - =
MAXPROC) ; = = i(
MPI Finalize(); /* Send own name back to process 0 */
exi;(O)' f MPI_Send (&myname, NAMELEN, MPI_CHAR, O, nametag, MPI_COMM_WORLD) ;
} ’ /* Send the received array back to process 0 */

MPI_Send (&y, LENGTH/np, MPI_INT, 0, datatag, MPI_COMM WORLD) ;

printf ("Process %d on host %s is distributing array x to all %d processes\n }
\n", \

Sl PN Es PR MPI_Finalize();
exit (0);

}

/* Scatter the array x to all proceses, place it in y */
MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \
MPI_COMM_WORLD) ;

Monday, July 4, 2011

Additional

multicore-specific issues

[< 2004] Shared Font-Side Bus
(Centralized Snooping)

10

[2005] Dual Independent Buses
(Centralized Snooping)

1

Up to 34GBJks
Platform Bandwidth

TR T TEEFFR

[2007] Dedicated High-Speed Interconnects

(Centralized Snooping)

I i fiit111|

[2007] Dedicated High-Speed Interconnects
(Centralized Snooping)

| n |

[2009] QuickPath
(MESI-F Directory Coherence)

I

| |
i 1 | | i !| ‘

f; ; http:/ /mc-fastflow.sourceforge.net

This and next generation multi-cores

 Exploit cache coherence

— and it is likely to happens also in the next future

' Memory fences are expensive

— Increasing core count will make it worse
— Atomic operations does not solve the problem (still fences)

Fine-grained parallelism appear hard to achieve

— 1/0 bound problems, High-throughput, Streaming, Irregular DP problems
— Automatic and assisted parallelization

Monday, July 4, 2011

f ey http://mc-fastflow.sourceforge.net

Two features - two problems

“ Memory/Cache Coherence

— Deal with multiple replicas of the saume location in different caches

write(A,3)
Thread 1 - co—— e eeesessenseenteeenneeaineenss >

Memory Consistency — rueaqz D _red®D

— Deal with the ordering in which writes
and reads at different locations i Destination
take effect in memory (issued by either | osr—fciob. Ad
the same or different processors/cores) Eee=

|

Read request

sonit [Memory access

— x86 (TS0), PPC (WO), alpha (RC), ... T
15 ___‘iif::\j-r:—:-———'-—-

Monday, July 4, 2011

Concurrent programming

basic mechanisms and paradigms

16

f; es http:/ /mc-fastflow.sourceforge.net

Basic low-level interaction models

low-level synchronisation in the shared memory model

— Mutual Exclusion (mutex)

— typically used as basic building block of synchronisations

— Producer Consumer

they are not equally demanding

— Mutual Exclusion is inherently more complex since requires deadlock-freedom

— require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

— Dekker and Bakery requires Sequential Consistency (++)

— Producer Consumer is a cooperative (non cyclic) process

17

Monday, July 4, 2011

‘ -, http://mc-fastflow.sourceforge.net

Bakery (Lamport 1976)

1 class Bakery implements Lock {
2 boolean[] flag;

3 Label[] label;

4 public Bakery (int n) {

5 flag = new boolean[n];

6 label = new Label[n];

7 for (int i = 0; 1 < n; i+) {
8

flag[i] = false; label[i] = 0;

9 }

10 |}

11 public void lock() {

12 int i = ThreadID.get();

13 flag[i] = true;

14 label[i] = max(label[0], ...,label[n-1]) + 1;
15 while ((3k != i)(flag[k] && (label[k],k) << (label[il,i))) {};
16}

17 public void unlock() {

18 flag[ThreadiD.get()] = false;

19 |}

20 }
Figure 1.9 The Bakery lock algorithm.

- Works for n threads, require SC (or PRAM Consistency)
Deadlock-free, fair (first come first served), 0(n)

Monday, July 4, 2011

f; « http://mc-fastflow.sourceforge.net

Are classic mutex working on a x86?

No!
— fry them, they are going to fail half of the fimes

' So, what can we do?
“transactional” operations (CAS, LL/SC)

— extend the “register” model with “transactional” operations (CAS)

— Compare-And-Swap, Test-And-Set, Load-Linked-Store-Conditional
— what do they do?

— execute a read AND a write as an atomic operation

— acts a memory fences, all inflight operations are committed before proceeding

19

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

Lock with CAS? Easy job.

volatile int lock = O;

void Critical() {
while (TestAndSet(&lock) == 1); // acquire lock
critical section //only one thread can be in this section at a time
lock=0 // release lock

)

Atomic operations are memory fences

— each atomic operation requires the reconciliation of caches
— significant effect on performance

20

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

Can we avoid locks?

Yes, in many ways using CAS (under relaxed memory models)

— actually building concurrent data structures accessed via CAS
— they perform better than locks-hased, but still they fence the memory

_and what about lock-free, CAS-free?

— Mutex cannot, Producer Consumer can be done

— also under some relaxed memory model, not all of them, however

— notice that Producer Consumer is inherently weaker with respect to Mutex because it does requires the
cooperation of partners whereas Mutex is required fo be deadlock-free

21

Monday, July 4, 2011

f ey http://mc-fastflow.sourceforge.net

Lamport & FastFlow FIFO queues

push_nonbocking(data) {
1f (NEXT(Chead) == tail) {
return EWOULDBLOCK;

hy
pead = NEXTChead); —— Proved to be correct under SC
return 0;

} — doesn't work under weaker models
_nonblocking(data) {)

pop-nombrocinateas —— Pushing lot of pressure on coherence
if (head == tail) {

-starn ENOULDBLOCK; subsystem because both producer and
ﬁaica - buffer[taill; consumer need to share both head and
etam 05 tail index of the queue

Lamport FIFO
1983

27

Monday, July 4, 2011

.,_ http:/ /mc-fastflow.sourceforge.net

Finally, FastFlow SPSC queues

push_nonbocking(data) { push_nonbocking(data) {
i1f (NEXT(Chead) == tail) { if (NULL != buffer[head]) {
return EWOULDBLOCK; return EWOULDBLOCK;
buffer[head] = data; buffer[head] = data;
head = NEXT(Chead); head = NEXT(Chead);
return 0; return 0;
¥ ks
pop_nonblocking(data) { pop_nonblocking(data) {
data = buffer[tail];
if (head == tail) { if (NULL == data) {
return EWOULDBLOCK; return EWOULDBLOCK;
} }
data = buffer[tail]; buffer[tail] = NULL;
tail = NEXT(tail); tail = NEXT(tail);
return 0; return 0;

Lamport FIFO FastFlow FIFO

Monday, July 4, 2011

.._ http://mc-fastflow.sourceforge.net

Finally, FastFlow SPSC queues

if (NEXTChead) == tail) { - if (NULL != buffer[head]) {

LA J U LJ LJ \.J [} A \J U LJ LJ \.J

buffer[head] = data; buffer[head] = data;
head = NEXT(Chead); head = NEXT(Chead);
return 0; return 0;
by ks
pop_nonblocking(data) { pop_nonblocking(data) {
affer[tail];
1f (head == tail) - == data) {
return EWOULDBLOC WME enforce store EWOULDBLOCK ;
3 o/‘a/er/ng on SUCCeSSiVe
data = buffer[tail] 21l] = NULL;

tail = NEXT(tail); cells/indexes on non-750. XT(tail);
:

9;
1 resurn Also it enforces k
Zrans /‘Z‘/\//Z(y vz po/nz(er
Lamport Fl rversal. stFlow FIFQ

Monday, July 4, 2011

G FHx http:/ /mc-fastflow.sourceforge.net

lock-free and CAS-free (fence-free)

——1 Single-Producer-Single-Consumer FIFO queues

— Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)
— Higham and Kavalsh. P1CT (Rel. Cons. (e.g. TSO)+proof - passive)
— Giacomoni et al. 2008 PPoPP (TSO + cache slipping - passive)

——1 Multiple-Producers-Multiple-Consumers FIFO queues
— with CAS (two of them) - Michael and Scott (PODC96)

— Also implemented in FastFlow, require deferred reclamation (expensive) to avoid ABA problem

— without CAS - passive » Cannot be done

— without CAS - active " FastFlow

~ We now know that augmenting the picture with locks will be “vseless” ...

Monday, July 4, 2011

High-level patterns &
FastFlow

f; ; http:/ /mc-fastflow.sourceforge.net

Pattern-based approach: rationale

Abstract parallelism exploitation pattern by parametric code

— e.g. higher order function, code factories, (++ templates, ...

— Hopefully, in such a way they can composed and nested as programming
language constructs

Provide user with mechanisms to specify the parameters

— tfunctional (seq code) and extra-functional (QoS) parameters

 Provide state-of-the-art implementation of each parallelism
exploitation pattern

26

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

| SPMC and MCSP via SPSC + control

- SPMC(x) fence-free queue with x consumers

— One SPSC “input” queue and x SPSC “output” queues ”SPMC? E
— One flow of control (thread) dispatch items from input to outputs

" MPSC(y) fence-free queue with y producers

— One SPSC “output” queue and y SPSC “input” queues ;@ 0
— One flow of control (thread) gather items from inputs to output

 x and y can be dynamically changed

| MPMC = MCSP + SPMC @sz

— Just juxtapose the two parametric networks

2]

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net

W
[N 1
Applications Efficient applications for multicore and manycore FEEE g —.O
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ... 1 @ 2
el ™
é N Vv
Problem Solving Autonomic | | Simulation || Accelerator e D&C
Environment Behav.Skeletons Montecarlo || self-offloading || -~ - 3

- -
—
-

High-level A Streaming networks patterns :/’ - 1 -
programming Skeletons: Pipeling, farm, D&C, ... inpu? . e'output

_
=l r : Stream E Stream
Low-level | T Arbitrary streaming networks (building blocks) 20
programming *g Lock-free SPSC, SPMC, MPSC, MPMC queues "-\.\
L

N
v

Run-time Simple streaming networks (building blocks) [@ : : Ll
support ..

v Lock-free SPSC queues and general threading model { SPMC MPSC
\ P
PAALLINY Multi-core and many-core . Sy @ S @
cc-UMA or cc-NUMA featuring sequential or weak consistency

lock-free SPSC queue Producer Consumer

High-level programming
— Lock-free/fence-free non-blocking synchronisations

— (++ STl-like implementation
28

Monday, July 4, 2011

http:/ /mc-fastflow.sourceforge.net

E.q. farm (0.k.a. master-worker)

schedule gather

tasks results

workers

{ common pﬂmdigm (compute something)

— Model foreach and Divide&Conquer
— (Can be used to build dato-flow engine
— Exploit it as a high-order language construct

— A (++ template factory exploiting highly optimised implementation

29

Monday, July 4, 2011

’.: http://mc-fastflow.sourceforge.net

Medium grain (5 pS workload)

8 L 1 1 I L 1
Ideal

FastFlow sl
21 TEB ==l
OpenMP

Cilk

o
=
e
Q
]
o
()

30 N. of cores
Monday, July 4, 2011

f; es http:/ /mc-fastflow.sourceforge.net

Pattern composition

- (++ STL-like implementation

— used to generatively compile skeletons into streaming networks
— fully memory barrier free implementation

High-level pattern compose with ; and { }

~— their implementation as parametric streaming networks (graphs)
— performance can be optimised as in streaming graphs (network of queues)

3]

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

Patterns, and they comp. implementation

farm{)

farm : farm —0< ./t—(:>0—

 D&C = farm + wrap —.<‘\2—

any variation of them requiring additional synch ...

Many open problems

D | http://mc-fastflow.sourceforge.net

Many open problems

" 1) Mechanisms e concurrency theory

— new queues and data containers, new allocation techniques, ...
— ¢¢-NUMA: mapping tools; smart-network support (RDMA)

~ 2) Formal Quantitative

— performance analysis, optimisation, ...

 3) Formal Qualitative

— correctness, protocol proofs, ...

- 4) Design and tools

— language evolution, compiler evolution, new features, meta-programming technique
evolution, staged compilation, adapfive support

Monday, July 4, 2011

W http:/ /mc-fastflow.sourceforge.net

new(B)
new(C)
o delete(B) delete(A) =
new(A) delete(C)
new(C)

Monday, July 4, 2011

W http:/ /mc-fastflow.sourceforge.net

new(B)
new(C)
delete(B) OS delete(A) | =
— L new(A) allocator delete(C)
new(C)

Monday, July 4, 2011

f; « http://mc-fastflow.sourceforge.net

S @,

G delete(B) '/delete(A) T
new(A) delete(C)
@ m
-)/
FF a%iator n;v‘(g)
" The graph is now cyclic

| | (with bound queues)
faster than posix, hoard, TBB wDeadlock

— unpublished, but available on sourceforge

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

Possible solutions

~ Use unbound queue to “break” cyclic dependencies

— unbound queue is slower than bound queue

~ Currently

— generate streaming network by growing a graph (via C++ class/templates)

— turn bound queue into unbound in case cycles may appear

" However

— patterns can be extended by the progrmmer (using standard 00)
— correctness is not guaranteed (unless using all unbound queues)

— The exploitation of unbound queue is suboptimal
— break the graph into DAGs connected by an unbound queue

Monday, July 4, 2011

' http:/ /mc-fastflow.sourceforge.net

s this complexity worth?

—— From performance viewpoint, yes

— (Core-to-core synchronisation latency
— less than 20 clock cycles
— real speedup achieved even synchronising every 10 ns on a standard core2 @ 2.5Ghz

— asingle CAS (atomic op) o cache miss is an order of magnitude more expensive

— Throughput
— the synchronisation itself does not introduce additional cache misses

— depend on access patterns, but anyway close to the theorefical limit

— Faster than TBB, OpenMP, Cilk on all applications we tested
——_ From design viewpoint

— we achieved the parallelisation of third party complex legacy codes in few days
— (4.5, k-means,

Monday, July 4, 2011

4/; FE http://mc-fastflow.sourceforge.net

Accelerator & self-offloading

Target the parallelisation of legacy code

— No need to redesign the application
— Local intervention in the code

Variable streamization (i.e. dynamic privatization onto a stream)

— Transform loops and D&C in streaming then offload them into dynamically
created (pattern-based) software accelerators using spare cores

— More powerful than expansion. Also do-across cycles can be managed

- Original 1 Privatization) Expansion A
for (1=0; i<Ni4+i) { || for (i=0;i<N;++i) { for (i=0;i<N;+-+i) {
temp=Al[i]+2; private temp=A[i]+2; temp[i|=A[i]+2;

Bli]=2*temp; B[i]=2*temp; Bli]=2*templi];
} }

N— S— S—
38

Monday, July 4, 2011

ks
-1
=
(=
>
«b)
(=P
‘=
.
(e
QQ
| Sr—
G
=
o
L
WV

Monday, July 4, 2011

1 // Original code
2 Fdefine N 1024

3 long A[N][N],B[N][N],C[N][N]; @

4 int main() {

5 // < it A,B,C>

6

7 for(int i=0;i<N;++1i) {

8 for(int j=0;j<N;++j) {
9

10 int _C=0;

11 for(int k=0;k<N;+-+k
12 _C += Ali][k]*B[k][j]
13 Cli][j]=-C;

14

15 }

16}

17 }

I

L@l @l |

39

r®n

r@'l

—® Q

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// FastFlow accelerated code
#define N 1024

long A[N][N],B[N][N],C[N][N];
int main()

41 }

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

// < init A,B,C>

ff :: ff_farm<> farm(true /* accel x/);

std :: vector<ff:: ff_node *x> w;

for(int i=0;i<PAR_DEGREE;++i)
w.push_back(new Worker);

farm.add_workers(w);

farm.run_then_freeze();

for (int i=0;i<N;i++) {
for(int j=0;j<N;++j) {
task_t * task = new task_t(i,j);
farm.offload (task); »
-
}
}
farm.offload((void *)ff :: FF_EOS);
farm.wait(); // Here join

// Includes
struct task_t {

task_t (int i,int j):i(i),j(j) {}
int i; int j;};

class Worker: public ff:: ff_ node {
public: // Offload target service

void * svc(void xtask) {
task_t * t = (task-t *)task;
int _C=0;
for(int k=0;k<N;++k)
C = Alt—>i)IJ*B[k][—>7];
Clt—>i][t—>]j] = -C;
delete t;
return GO_ON;

}

f; ; http:/ /mc-fastflow.sourceforge.net

Lock-free and fence-free mechanism correctness ==

— Is your machine TSO? Do you need enforce WriteBarriers on pointer traversal?
— Is the dynamic memory allocation suffering from ABA problem?
— Proving correctness requite to model write and read

 Offloading, interesting correciness issues

— pointers should be managed as values (with possible read-only aliasing)
— data-hazards analysis (v—w, r = w w — 1)

' Huge demand for static and dynamic analysis tool

~ hut not just theoretical fools ...

Monday, July 4, 2011

f; ; http:/ /mc-fastflow.sourceforge.net

No conclusions! We just started. Thank you.

——FastFlow: an open source projec

— hitp://mecfastflow.sourceforge.net

— Many contributes from the open source community worldwide
— Over 25K website visits, 6K downloads form 120 different countries in 1 year and half

—— Currently supported by

— HPC advisory board academic award 2011 (announced at Supercomputing 2011)
— ParaPhrase STREP (FWP7 - 3.5 MEuro, starting Oct 2011, 3 years)
— BioBITS (ltalian Project, Regione Piemonte, 2009-2011)

—— Many existing benchmarks and applications

— (4.5, k-means, pbzip-H, smith-waterman, Stochkit-ff, Parallel MonteCarlo, N-queens ...
— Many on my laptop, just ask if you interested

Monday, July 4, 2011

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

-=
=
=
(Vg
=
D

T

Monday, July 4, 2011

