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Outline

✴ Issues for multicore era
✦ Mostly focusing on shared memory hardware

✴ High-level patterns & FastFlow

✴ The challenge for Formal methods.
✦ Questions and thoughts in this context (in open order)

✦ How our work might benefit or influence on formal method 
community
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ISSUEs for exascale era

✴ Increasing scalability requires to decrease 
concurrency grain

✴ Programming systems should be designed to support 
fast data movement and enforce locality
✦ It is not about Flops, it is about data movement

✴ Novel computing models are needed
✦ A computer language is not a computing model.  A library is not a 

computing model.
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Micro-benchmarks: farm of tasks

void Emitter () { 
for ( i =0; i <streamLen;++i){ 
task = create_task (); 
queue=SELECT_WORKER_QUEUE(); 
queue −>PUSH(task); 

} 
} 

void Worker() { 
while (!end_of_stream){ 
myqueue −>POP(&task); 
do_work(task) ; 
} 

} 

int main () { 
spawn_thread( Emitter ) ; 
for ( i =0; i <nworkers;++i){ 
spawn_thread(Worker); 

} 
wait_end () ; 

} 
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Used to implement: parameter sweeping, master-
worker, etc.
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Task farm with POSIX lock/unlock 
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Can we avoid locks?

✴  Under relaxed memory models, using CAS/atomic 
ops
✦ “lock-free” data structures

✦ they perform better than lock-based

✦ they fence the memory and pay cache coherency reconciliation 
overhead
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CompareAndSwap queues
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Lock vs CAS at fine grain (0.5 μS)
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Re-starting from the basics

✴ Reducing the problem to the bare bones
✦ Producer-Consumer model (streaming)

✦ Directly control thread blocking using non-blocking 
synchronizations

✦ Directly design the “data channel” 

• Having clear how data move in the whole memory hierarchy

✴ Restarting from the FIFO queue P C
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Interaction models: theoretical background 

✴ Low-level synchronisation in the shared memory 
model
✦ Mutual Exclusion (mutex)

• typically used as basic building block of synchronisations

✦ Producer Consumer

✴ They are not equally demanding
✦ Mutual Exclusion is inherently more complex since requires 

deadlock-freedom 

• require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

• Dekker and Bakery requires Sequential Consistency (++) 

✦ Producer Consumer is a cooperative (non cyclic) process
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Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO - derived from P1C1 1997 
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Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO - derived from P1C1 1997 

head and tail are 
mutually invalidated by 

producer and 
consumer

1 cache miss every 
push and pop (at least)

producer read/write 
head

consumer read/write 
tail

no misses

11

excluding “true” deps

extended domain
on void *



✴ Memory/Cache Coherence
✦ Deal with multiple replicas of the same location in different caches

✴ Memory Consistency
✦ Deal with the ordering in which writes

and reads at different locations 
take effect in memory (issued by either 
the same or different processors/cores)

Recall: Two features - two problems

write(A,3)

write(A,1)
Thread 1

Thread 2
read(A,?)
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Memory 
Consistency 

✴ Processors:
✦ x86, x86_64: Total Store 

Order
✦ PowerPC: Weak Ordering 

(PowerEN?)
✦ ARM Cortex: Weak 

Ordering
✦ Alpha: Release 

Consistency

✴ Any Sequential 
Consistency?

✦ No! It is not efficient
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Mem Consistency: Seq. Consistency

✴ Can both “if” be evaluated to TRUE?
✦ Ideally NO, under Sequential Consistency NO

✦ Under more relaxed models? Not guaranteed ...

✴ Java memory model doesn’t expose this complexity
✦ at the price of performance

Pi Pj
write(A,0)
...
write(A,1)
if (B==0) ...

write(B,0)
...
write(B,1)
if (A==0) ...
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FastFlow SPSC queues

✴ Proved to be correct under SC 

✦ doesn’t work under weaker 
models

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}
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FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

(WMB)
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For any 
model 
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than TSO



FastFlow SPSC queues
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High-level patterns &
FastFlow 
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Pattern-based approach: rationale

✴ Abstract parallelism exploitation pattern by 
parametric code
✦ e.g. higher order function, code factories, C++ templates, ...

✦ Hopefully, in such a way they can composed and nested as 
programming language constructs

✴ Provide user with mechanisms to specify the 
parameters 
✦ functional (seq code) and extra-functional (QoS) parameters

✴ Provide state-of-the-art implementation of each 
parallelism exploitation pattern
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FastFlow: architecture

✴ High-level programming
✦ Lock-free/fence-free non-blocking synchronisations

✦ C++ STL-like implementation
20

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model 

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues 

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons 

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...
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E.g. farm (a.k.a. master-worker)

✴ Common paradigm
✦ Model foreach and Divide&Conquer
✦ Can be used to build data-flow engine

✦ Exploit it as a high-order language construct 

• A C++ template factory exploiting highly optimised implementation

E C
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W
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W
n

schedule
tasks

workers 
(compute something)

gather
results
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E.g. farm (a.k.a. master-worker)

✴ Common paradigm
✦ Model foreach and Divide&Conquer
✦ Can be used to build data-flow engine

✦ Exploit it as a high-order language construct 

• A C++ template factory exploiting highly optimised implementation
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The code

Text
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Medium grain (5 μS workload)
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Edge-preserving denoiser. Live demo!

Lena* with 90% of noise is restored in 4 seconds
Next best result in literature is about 180 seconds

Lena Lombardy. Standard test image, Playboy magazine centerfold (top). Nov. 1972

AMD Magny-cour 4x12 cores

24
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Pattern composition

✴ C++ STL-like implementation
✦ used to generatively compile skeletons into streaming networks

✦ fully memory barrier free implementation

✴ High-level pattern compose with ; and { }
✦ their implementation as parametric streaming networks (graphs)

✦ performance can be optimised as in streaming graphs (network of 
queues)
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Patterns, and they comp. implementation

✴ farm

✴ pipe

✴ farm{ pipe }

✴ farm ; farm

✴ D&C = farm + wrap

✴ any variation of them requiring additional synch ...
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The challenge for Formal methods.
Questions and thoughts in this context 

(in open order).
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Many open problems

✴ 1) Mechanisms e concurrency theory
✦ new queues and data containers, new allocation techniques, ...

✦ cc-NUMA: mapping tools; smart-network support (RDMA)

✴ 2) Formal Quantitative
✦ performance analysis, optimisation, ...

✴ 3) Formal Qualitative
✦ correctness, protocol proofs, ...

✴ 4) Design and tools
✦ language evolution, compiler evolution, new features, meta-

programming technique evolution, staged compilation, adaptive support
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From patterns to metal

✴ Graphs can be used as compilation (intermediate) 
layer

✴ Is this good or a bad news? 
✦ Graphs well understood

• Thread pinning, thread affinity, addresses locality, concurrent code optimisation, ..., can 
be modelled as graph 

• Traditional tool of formal method community

✦ Everything concerning “graph” is complex by its very nature

• At least for myself
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Simple? 
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SHR Inference rules...in one slide 
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Parallel

Restrict

Merge

The system can do 
whatever disjoint 
subsystems do

The system can do any 
transition not requiring 
any synchronisations on 

restricted node
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Programming model
✴ Producer-Consumer and mutal exclusion have a different 

pragmatics: cooperation vs competition

✴ FastFlow advocates Producer-Consumer
✦ Synchronisation via message-passing, data exchange via both message-

passing and shared memory

✦ Allow mutual exclusion on business code under the full responsibility of 
the programmer because this is not efficient at fine grain

• They are additional bi-directional arrows in the graph

✴ IBM BlueGene/Q (forthcoming) has hardware transactional 
memory
✦ LL/SC with versions

✦ Efficient

31



Scenario Aim The language The proof system Conclusions

Motivation

Inconsistencies are easy to produce

The ABA problem:
Assume two threads T1 and T2 accessing a shared memory
location.

1 Thread T1 reads A from the memory
2 The scheduler stops T1 and activates T2
3 Thread T2 writes B on the memory, does something else,

and writes A
4 The scheduler stops T2 and activates T1
5 Thread T1 reads A from the memory, assumes no

changes, and continues...

Semantic correctness of some data structure implemented
using the memory locations manipulated by the threads may
have been compromised (example: a stack over a linked list)

A simple proof system for lock-free
concurrency

Luís Caires, Carla Ferreira, and António Ravara

Dep. of Informatics, Faculty of Sciences and Technology
New University of Lisbon

June 20, 2011

Scenario Aim The language The proof system Conclusions

New programming primitives

Non-blocking Primitives
CompareAndSwap (CAS)
CAS(loc, vold , vnew ) atomically exchange the value in the
memory location loc with value vnew , provided the current value
in loc is vold .

LoadLink (LL) / StoreConditional (SC)
The pair of primitives have a transaction-like semantics:

LL(loc) returns the address of the memory location loc

May be interpreted as the transaction start
SC(loc, v ) tries to store v in the memory location loc:

if the location has not been written by any concurrent
thread since LL, v is written atomically and the instruction
returns true; otherwise, it returns false, not writing the value

May be interpreted as the transaction commit, returning
either “success” or “abort”

Scenario Aim The language The proof system Conclusions

Operational Semantics

A transition relation

Transition system - memory manipulation
JEK(s,h) = v

(s, h, x = E) �⇤ ((s[x ⌅⇤ v ], h,skip)
(assignment)

JEK(s,h) = v1 ⇧ h(v1) = (v , _)
(s, h, x = ⇥E) �⇤ ((s[x ⌅⇤ v ], h,skip)

(load)

JE2K(s,h) = v2 ⇧ JE1K(s,h) = v1 ⇧ h(v1) = (_, b)
(s, h, ⇥E1 = E2) �⇤ (s, h[v1 ⌅⇤ (v2, b == 1 ? 2 : b)],skip)

(store)

Scenario Aim The language The proof system Conclusions

Operational Semantics

A transition relation

Transition system - transaction-like primitives

(load-link)
h(s(x)) = (v , b)

(s, h, y = LL(x)) �⇥ (s[y ⌅⇥ v ], h[s(x) ⌅⇥ (v , b == 0 ? 1 : b)],skip)

(store-conditionalT )
h(s(x)) = (_, 1) ⇧ h(s(y)) = (v , _)

(s, h, z = SC(x , y)) �⇥ (s[z ⌅⇥ 1], h[s(x) ⌅⇥ (v , 0)],skip)

(store-conditionalF )
h(s(x)) = (_, b) ⇧ b ⇤= 1 ⇧ h(s(y)) = (v , _)

(s, h, z = SC(x , y)) �⇥ (s[z ⌅⇥ 0], h[s(x) ⌅⇥ s(y)],skip)
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WGT 2011
WORKSHOP ON GENERAT IVE TECHNOLOG IES

NO R B E R T PATA K I , ZO LT Á N PO R K O L Á B

A N D ME L I N D A S I M O N (ED S . )

A More E�cient and Type-Safe Version of
FastFlow �

Zalán Szűgyi and Norbert Pataki

Department of Programming Languages and Compilers, Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

lupin@ludens.elte.hu, patakino@elte.hu

Abstract. Nowadays, one of the most important challenges in program-
ming is the e⇤cient usage of multicore processors. Many new program-
ming languages and libraries support multicore programming.
FastFlow is one of the most promising multicore C++ libraries. Unfortu-
nately, a design problem occurs in the library. One of the most important
methods is pure virtual function in a base class. This method supports
the communication between di�erent threads. Although, it cannot be
template function because of the virtuality, hence, the threads pass and
take argument as a void* pointer. The base class is not template neither.
This is not typesafe approach. We make the library more e⇤cient and
safer with the help of generative technologies.

1 Introduction

The recent trend to increase core count in processors has led to a renewed interest
in the design of both methodologies and mechanisms for the e�ective parallel
programming of shared memory computer architectures. Those methodologies
are largely based on traditional approaches of parallel computing.

Usually, low-level approaches supplies the programmers only with primitives
for flows-of-control management (creation, destruction), their synchronization
and data sharing, which are usually accomplished in critical regions accessed in
mutual exclusion (mutex). For instance, POSIX thread library can be used to
this purpose. Programming parallel complex applications in this way is certainly
hard; tuning them for performance is often even harder due to the non-trivial
e�ects induced by memory fences (used to implement mutex) on data replicated
in the core’s caches.

Indeed, memory fences are one of the key sources of performance degrada-
tion in communication intensive (e.g. streaming) parallel applications. Avoiding
memory fences means not only avoiding locks but also avoiding any kind of
atomic operation in memory (e.g. Compare-And-Swap, Fetch-and-Add). While
there exists several assessed fence-free solutions for asynchronous symmetric
� The European Union and the European Social Fund have provided financial support

to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-
0003.
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new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Example: FF-allocator
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new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Example: FF-allocator

OS
allocator
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new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Example: FF-allocator

✴ faster than posix, hoard, TBB
✦ unpublished, but available on sourceforge

FF  allocator

The graph is now cyclic
(with bound queues)

➠Deadlock
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ISSUEs for exascale era

✴ A computer language is not a computing model.
A library is not a computing model.
✦ Data communication happen via both shared-memory and messages. 

Synchronisations are realised via message-passing (FIFO queues).

✦ Synchronisation are local (no barriers) and determined by high-level 
algorithmic patterns. Data races are identified and solved at design time.

✴ Increasing scalability requires to decrease concurrency 
grain. Programming systems should be designed to support 
fast data movement and enforce locality.
✦ FastFlow: inter-core communication latency ~7-10 ns on core2 2Ghz. 

Better than other approaches at fine grain.

35



ISSUEs for exascale era

✴ How to describe concurrency exploitation at large scale?
✦ Parametric patterns. QoS/performance as first-class concept. Couple 

data with flow-of-control beyond OO (how?)

✴ How we promote scalability “by design” and performance
portability?
✦ Development tools.  Mapping/affinity, should be automatically managed. 

Graphs very expressive. Graph-to-graph mapping encode semantic-
preserving transformation (i.e. optimisation).

✴ Functional-style coding?
✦ Why not. Nicely translated into dataflow. Nicely maps into streaming.

✦ Empirically the only way I found to write SSE/AVX.
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