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Formal synthetic system biology

?



System Biology & Gillespie’s algorithm

• Traditionally studied with continuous ordinary 
differential equations (ODE)

• bulk reactions, i.e. average behaviour 

• Gillespie algorithm: discrete and stochastic 
simulation of a system via explicit simulation 
of each reaction

• Gillespie realization represents a random walk 
that exactly represents the distribution of the 
master equation (i.e. ODEs)

• under some hypothesis

http://en.wikipedia.org/wiki/Master_equation
http://en.wikipedia.org/wiki/Master_equation


 Gillespie’s algorithm [77]
1. Initialization: Initialize the number of molecules in the 

system, reactions constants, and random number 
generators.

2. Monte Carlo step: Generate random numbers to 
determine the next reaction to occur as well as the time 
interval. The probability of a given reaction to be chosen 
is proportional to the number of substrate molecules.

3. Update: Increase the time step by the randomly 
generated time in Step 2. Update the molecule count 
based on the reaction that occurred.

4. Iterate: goto Step 2 unless the number of reactants is zero 
or the simulation time has been exceeded.



Increasingly popular approach

• Sometime more informative than (ODE)
• multi-stability, divergent or rare behaviours, 

peaks, ...
• multi-scale systems 

• e.g. deriving macro behaviour from micro

• More computational demanding
• much more, especially in motivating cases 



Increasingly popular approach
• Bio-PEPA [Hillston, Ciocchetta]
• SPiM [Cardelli, Phillips]
• Stochastic Pi [Priami]
• Stochkit [Petzold]
• Spatial Pi [Uhrmacher]
• Calculus of Wrapped Components [our own]

• kinetics: mass-action, Michaelis–Menten, Hill ...

• ...



http://mc-fastflow.sourceforge.net
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The Calculus of Wrapped Compartments (CWC)

A term is intended to represent a biological system. A term is
built by means of the compartment constructor, (�⇤�), from a
set E of atomic elements, ranged over by a, b, c , d . A simple
term is defined as:

t ::= a
�� (a ⇤ t)

We write t to denote a (possibly empty) multiset of simple terms
t1 . . . tn. Similarly, with a we denote a (possibly empty) multiset of
atoms.
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Examples of SCWC terms

(i) represents (a b c ⇥ •);
(ii) represents (a b c ⇥ (d e ⇥ •));
(iii) represents (a b c ⇥ (d e ⇥ •) f g).
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Dynamics of SCWC

Rewrite rules are defined as pairs of terms, in which the left term
characterizes the portion of the system in which the event
modelled by the rule can occur, and the right one describes how
that portion of the system is changed by the event.

Biomolecular Event Examples of CWC Rewrite Rules

State change a ⇥� b
Complexation a b ⇥� c
Catalyzed a (b x ⇤ y) ⇥� (b x ⇤ a y)
membrane crossing (b x ⇤ a y) ⇥� a (b x ⇤ y)
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Stochastic Rules

Rules are decorated with a rate (speed of the reaction).

A Stochastic Rewrite Rule, R, is denoted by P
k⇤⇥ P 0.

The stochastic semantics is given by transitions between terms
labeled with the rule applied, R, and a transition rate depending
on the rate of rule R:

t
R,k⇥p�⇥ t 0

where R is P
k⇤⇥ P 0, and p is the number of di�erent ways in which

the pattern P may match t (t = C [P�]) and such that
t 0 = C [P 0�] for some context C and variable instantiation �.

M. Coppo, F. Damiani, M. Drocco, E. Grassi, A. Troina Stochastic Calculus of Wrapped Compartments



Ex: HIV and immune response
(progression to AIDS)
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V virus, all phenotypes (V4,V5)

the spike suggests the mutation 
V5 →V4 (more aggressive)

immune response Z=Z4+Z5 
remain stable (but for the peak).

now Z4 decrease and 
Z5 increase

i.e. HIV is turning into
AIDS more rapidly

M. Aldinucci, A. Bracciali, P. Liò, A. Sorathiya, and M. Torquati. StochKit-FF: Efficient systems biology on multicore architectures. In High Performance 
Bioinformatics and Biomedicine (HiBB), vol. 6586 of LNCS, 2011. Springer.



• Peaks are informative events,
• virus mutation triggers AIDS progression
• hardly detected with ODEs

• high resolution required to detect spikes,
• each trajectory can be over 6G Bytes of data

• and thousands of trajectories are needed
• compute everything, save everything, move and 

join all data, analyse all data, then get first results
• often to discover parameters are wrong ...



• It is Monte Carlo,
• well understood
• easy to parallelise on different trajectories 

• it is Monte Carlo w Markov Chains models (CTMC)
• single trajectory: no parallelisation without relaxation
• compute time ≠ simulation time
• compute time for different trajectories heavily unbalanced

• fast reactions and slow reactions, some not interesting  (e.g. water-steam-water)



Unbalancing + filtering

• few trajectories (e.g. the interesting ones) can 
significantly delay the completion of others

• over-provisioning don’t help that much
• simulated time moves at different pace w.r.t. wall-

clock time 
• data joining from different trajectories should be 

aligned at the same simulation time
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• It is Monte Carlo,
• well understood
• easy to parallelise on different trajectories 

• it is Monte Carlo w Markov Chains models (CTMC)
• single trajectory: no parallelisation without relaxation
• compute time ≠ simulation time
• compute time for different trajectories heavily unbalanced

• fast reactions and slow reactions, some not interesting  (e.g. water-steam-water)

• it is Monte Carlo AND data analysis
• data is big, analysis can be very expensive and it typically starts 

after the simulation
• the whole workflow is perceived too “slow” by bio-scientists to 

be really useful 



Collector
Traiectories

Post-processing
e.g. parsing

Disk

From Distributed to Multicore and back

Rebalance

In BioSims the whole 
trajectory is needed, easily 

GB of data

The whole dataset, TB of 
data, should be re-read to 
extract statistical estimators

Scheduler
Parameter

Sweep

Model 
description

Pre-processing
e.g. parsing

Worker n
run simulations

Worker 1
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one or more
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From Distributed to Multicore and back

Rebalance
Scheduler
Parameter

Sweep

Model 
description

Pre-processing
e.g. parsing

Worker n
run simulations

Worker 1
run simulations

one or more
simulation
instance 

one or more
simulation
instance 

Disk 1
Collector

Traiectories
Post-processing

e.g. parsing

Now the issue become a real problem 
Bottlenecks: disk and memory
Post-processing: not pipelined and 
often not parallel at all



From Distributed to Multicore and back

• Multi Carlo sims for Bio are I/O-bound
• Sampling reduce I/O traffic but worsen precision and 

analysis of “strange” dynamics (spikes, diversion from 
average, etc.), which observation motivates  stochastic 
analysis  (ODEs)

• Data analysis is also I/O-bound
• if approached is a “post-processing” fashion, data should be 

retrieved from the disks

• The porting of distributed solution “as is” on multicore 
is going insist on weakness of multicore architectures

• Memory wall, I/O, disk
• SIMD/GPGPUs do not change the analysis substantially



From Distributed to Multicore and back

• The same arguments holds on distributed, grids, 
and clouds as soon as the workflow is considered 
as a whole

• simulation, data collection and merging, analysis

• Rationale
• Manage data as stream, compute  online

• May require more computing and less bandwidth
• Computation should be designed to be pipelined

• Establish fast data paths across cores/hosts

• Avoid low-level concurrency management
• Portability, performance, portability of performance, maintenance, porting 

from sequential



Quotes from P. Beckman EuroPar 11 
“exascale” keynote 

• coarse grain concurrency is nearly exhausted

• it is not about Flops, it is about data movement

• programming systems should be designed to 
support fast data movement and enforce locality

• shared-memory & inter-socket messaging

• we need a programming model

• a computer language is not a computing model
a library is not a computing model

• we need a efficient and compositional run-time

18
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it is not about Flops, it is about data 
movement, we need compositional run-time

• Streams
• focus on data movements at the prog model level
• clear semantics
• support compositionally and also locality 

• the latter is a bit more counter-intuitive

• High-level programming
• e.g. patterns

• Patterns + streams
• can be implemented efficiently on both multi-core, 

distributed, and both 



FastFlow
http://mc-fastflow.sourceforge.net/

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net


FastFlow (multicore)

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA  & cc-NUMA 

Applications on multicore, many-core
Efficient and portable - designed with high-level patterns



Layer 1: Simple streaming networks
4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge 
18MB L3 shared cache, 256K L2
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Layer 1: Simple streaming networks

DR
AF
T

1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati.  An Efficient Synchronisation 
Mechanism for Multi-Core Systems. 

EuroPar 2012.
Wed 29 Aug - B3 multicore 14.30-16.00 

tail head

dynamic
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Layer 1: Simple streaming networks 
http://www.1024cores.net/home/technologies/fastflow
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Layer 3: streaming networks patterns 

• Composition via C++ template meta-programming

• CPU: Graph composition

• GPU: CUDA streams

• CPU+GPU: offloading

• farm{ pipe }

• pipe(farm, farm)

• pipe(map, reduce)

• ....
26
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copy_H2D

farm_start



• farm
• on CPU - master-worker - parallelism exploitation
• on GPU - CUDA streams - automatic exploitation of asynch 

comm 

• pipeline
• on CPU - pipeline
• on GPU - sequence of kernel calls or global mem synch

• map
• on CPU - master-worker - parallelism exploitation
• on GPU - CUDA SIMT - parallelism exploitation

• reduce
• on CPU - master-worker - parallelism exploitation
• on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

• D&C
• on CPU - master-worker with feedback - // exploitation
• on GPU - working on it, maybe loop+farm

Layer 3: streaming networks patterns 

stream[k]

copy_D2H

kernel

copy_H2D

stream[0]

farm_start

stream[1] stream[n]

farm_start



Layer 3: streaming networks patterns
(easy to port)



+ distributed

• Generic ff_node is subclassed to ff_dnode
• ff_dnode can support network channels

• P2P or collective
• used as frontier node of streaming graph
• can be used to merge graphs across distributed platforms

• No changes to programming model
• at least require to “add” stub ff_dnode
• when passing pointers data is serialised

• serialisation hand-managed (zero-copy, think to Java!)

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati, P. Kilpatrick.  Targeting distributed systems in FastFlow. Should be next talk!

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA  & cc-NUMA 

Applications on multicore, many core & distributed platforms of multicores
Efficient and portable - designed with high-level patterns

Distributed platforms
Clouds, clusters of SMPs

Simple streaming networks
Zero copy networking + processes model

Arbitrary streaming networks
Collective communications  + FF Dnodes



CWC simulator example
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M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, M. Torquati, A. Troina. On designing multicore-aware simulators for biological systems. PDP 2011. 2011. IEEE.
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M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, E. Sciacca, S. Spinella, M. Torquati, 
A. Troina. On parallelizing on-line statistics for stochastic biological simulations. In  Euro-Par 
2011 Workshops, HiBB, vol 7155 of LNCS.
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Performance
(preliminary)
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Involved data

• Simple examples (neurospora, ...)
• 2-4 double * n. of variables * n. of samples x n. 

of trajectories * cases in sensitivity analysis
• e.g.4*8*4*1M*1k*8 ~ 1 TBytes  

• HIV 6GB x 1024 trajectories ~ 6TB
• The more observed variables, precision, 

cases for sensitivity analysis the more 
data



• CMS: Compact Muon Solenoid at CERN
• 3500 scientists, 180 Universities and Research Labs (40 countries)
• CMS is like a ~75 MegaPixels Digital Camera. 40M “photos”/s 

Selection of 300 ‘photos’/s ~450 MB/s from the detector  are ~PBs 
of data/year

• CERN has (of course) its well established data flow and 
infrastructure, however ...

IMPACT Innovative Methods for Particle Colliders at the Terascale
(2012-2015)





IMPACT Innovative Methods for Particle Colliders at the Terascale
(2012-2015, oversimplified vision)

huge data Diff
(somehow)

Monte Carlo simulation
of “known” traces

Filtered data
to be analysed

(much smaller)

huge data

Particle physicists Theoretic physicists

new knowledge

Monte Carlo simulations
smaller but frequent 

requires great “reactivity”
of the workflow to tune models

new speculations

Preliminary results on
channel H→ZZ→4l

shown at Higg’s boson 
claim Jul 2012

(Amapane at al.)



Formalising the cell cycle switch
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Direct competition: unstable switch

CWC syntax

Courtesy of Luca Cardelli
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... after a number of transformations: a 
stable switch faithfully modelling cell switch

CWC 
syntax

Courtesy of Luca Cardelli
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• Demo: unstable switch 
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Bacteriophage λ life cycle
integration of a strand of DNA in 
the molecule of E. coli DNA
(multi-stable)
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Transcriptional regulation in 
Neurospora
(circadian clock period detection)
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Conclusions
• Talk focused on programming model

• Many important“in a cloud” ignored in the talk: 
middleware, faults, ...

• Data movement & high-level are key features
• helps the mapping of features to platforms and performance portability
• ease the design
• MapReduce is an instance, should be not the only one

• Formal biology at embryonal stage
• similar data & computation problems in analysis “in 

vitro” experiments
• increasing interest from industrial and “core” bio 

scientist for parallel computing
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