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* Stochastic Formal System Biology

e From Distributed to Multicore and back

* On programming models

e FastFlow

* The CWC parallel simulator for sys bio

* Some preliminary results
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System Biology & Gillespie’s algorithm

e Traditionally studied with continuous ordinary
differential equations (ODE)

e bulk reactions, i.e. average behaviour

 Gillespie algorithm: discrete and stochastic
simulation of a system via explicit simulation
of each reaction

* Gillespie realization represents a random walk
that exactly represents the distribution of the
master equation (i.e. ODEs)

e under some hypothesis


http://en.wikipedia.org/wiki/Master_equation
http://en.wikipedia.org/wiki/Master_equation

Gillespie’s algorithm [77]

1. Initialization: Initialize the number of molecules in the
system, reactions constants, and random number
generators.

2. Monte Carlo step: Generate random numbers to
determine the next reaction to occur as well as the time
interval. The probability of a given reaction to be chosen
is proportional to the number of substrate molecules.

3. Update: Increase the time step by the randomly
generated time in Step 2. Update the molecule count
based on the reaction that occurred.

4. Iterate: goto Step 2 unless the number of reactants is zero
or the simulation time has been exceeded.



Increasingly popular approach

* Sometime more informative than (ODE)

e multi-stability, divergent or rare behaviours,

peaks, ...

* multi-scale systems

e e.g. deriving macro behaviour from micro

* More computational demanding

e much more, especially in motivating cases



Increasingly popular approach

* Bio-PEPA [Hillston, Ciocchetta]
e SPiM [Cardelli, Phillips]

* Stochastic Pi [Priami]

* Stochkit [Petzold]

e Spatial Pi [Uhrmacher]

* Calculus of Wrapped Components [our own]

e kinetics: mass-action, Michaelis—Menten, Hill ...



The Calculus
SCWC The Simulator
A Case Study

The Calculus of Wrapped Compartments (CWC)

The Calculus
SCWC The Simulator
A Case Study

Examples of SCWC terms

A term is intended to represent a biological system. A term is
built by means of the compartment constructor, (— | —), from a
set £ of atomic elements, ranged over by a, b, ¢, d. A simple
term is defined as:

t = a | (37

We write t to denote a (possibly empty) multiset of simple terms

t1...t,. Similarly, with 3 we denote a (possibly empty) multiset of

atoms.

M. Conpo. F. Damiani. M. Drocco. E. Grassi. A. Troina Stochastic Calculus of Wranpned Combpartments
The Calculus
SCWC The Simulator
A Case Study

(i) (i) (iii)

o (i) represents (a b c | e);
o (ii) represents (a b c | (d e]e));
@ (iii) represents (a b c|(d e|e) f g).

M_ Cobnpo. F. Damiani. M. Drocco. E. Grassi. A. Troina Stochastic Calculus of Wranned Compartments
The Calculus
SCWC The Simulator
A Case Study

Stochastic Rules

Dynamics of SCWC

Rewrite rules are defined as pairs of terms, in which the left term
characterizes the portion of the system in which the event
modelled by the rule can occur, and the right one describes how
that portion of the system is changed by the event.

Biomolecular Event | Examples of CWC Rewrite Rules
State change ar— b

Complexation ab—c

Catalyzed a(bxly)—(bx]ay)
membrane crossing (bx|lay)—a(bx]y)

Rules are decorated with a rate (speed of the reaction).

A Stochastic Rewrite Rule, R, is denoted by P LNy

The stochastic semantics is given by transitions between terms
labeled with the rule applied, R, and a transition rate depending
on the rate of rule R:

— Rkxp —

t — t/

: k : : : :
where R is P — P’, and p is the number of different ways in which
the pattern P may match t (t = C[Po]) and such that
t' = C[P’o] for some context C and variable instantiation o.



Ex: HIV and immune response

(progression to AIDS)

V virus, all phenotypes (V4,V5) immune response Z=Z4+Z5
remain stable (but for the peak).

the spike suggests the mutation
V5 —=V4 (more aggressive)

now Z4 decrease and
L5 increase
i.e. HIV is turning into
AIDS more rapidly
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M. Aldinucci, A. Bracciali, P. Lid, A. Sorathiya, and M. Torquati. StochKit-FF: Efficient systems biology on multicore architectures. In High Performance
Bioinformatics and Biomedicine (HiBB), vol. 6586 of LNCS, 2011. Springer.



e Peaks are informative events,

* virus mutation triggers AIDS progression
e hardly detected with ODEs

* high resolution required to detect spikes,

 each trajectory can be over 6G Bytes of data

* and thousands of trajectories are needed

e compute everything, save everything, move and
join all data, analyse all data, then get first results

e often to discover parameters are wrong ...




e Jtis Monte Carlo,

e well understood

* easy to parallelise on different trajectories
* itis Monte Carlo w Markov Chains models (CTMC)

e single trajectory: no parallelisation without relaxation
° compute time = simulation time

e compute time for different trajectories heavily unbalanced

o fast reactions and slow reactions, some not interesting (e.g. water-steam-water)




Unbalancing + filtering

wall-clock Ssimulation trajectow reduction
time — - — - - - - - - - - - — >
al a2 a3 a4 b1 b2 b3 b4 F(a,...,f) '
{a,b}@P1 O—————80 | | | ,
cl c2 c3 c4 di d2 d3 d4 Co
{c,d}@P2 O— : —@O0——— b 1)
el e2 e3 ed4 fi 2 i3 f4 idle |
{e,f@P3 O—~—}+—+O0——4—

e few trajectories (e.g. the interesting ones) can
significantly delay the completion of others

e over-provisioning don’t help that much

e simulated time moves at different pace w.r.t. wall-
clock time

e datajoining from different trajectories should be
aligned at the same simulation time



e Jtis Monte Carlo,

e well understood

* easy to parallelise on ditferent trajectories
* itis Monte Carlo w Markov Chains models (CTMC)

e single trajectory: no parallelisation without relaxation
* compute time = simulation time

e compute time for different trajectories heavily unbalanced

. fast reactions and slow reactions, some not interesting (e.g. water-steam-water)

* itis Monte Carlo AND data analysis

e data is big, analysis can be very expensive and it typically starts
after the simulation

e the whole workflow is perceived too “slow” by bio-scientists to
be really useful




From Distributed to Multicore and back
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In BioSims the whole
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From Distributed to Multicore and back

' Now the issue become a real problem

. Bottlenecks: disk and memory
Post-processing: not pipelined and

@ %8& ’Q— ' often not parallel at all

|

e l Cgt
’ '
| one or more
simulation
instance
_Model || | pre-processing -
escription e.g. parsing
Sweep

one or more

A h\ simulation
5 instance
NHs = NH;
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From Distributed to Multicore and back

e Multi Carlo sims for Bio are 1/ O-bound

e Sampling reduce I/O traffic but worsen precision and
analysis of “strange” dynamics (spikes, diversion from

average, etc.), which observation motivates stochastic
analysis (ODEs)

e Data analysis is also I/ O-bound

e if approached is a “post-processing” fashion, data should be
retrieved from the disks

e The porting of distributed solution “as is” on multicore
is going insist on weakness of multicore architectures

e Memory wall, I/O, disk
e SIMD/GPGPUs do not change the analysis substantially



From Distributed to Multicore and back

e The same arguments holds on distributed, grids,
and clouds as soon as the workflow is considered
as a whole

* simulation, data collection and merging, analysis
* Rationale

* Manage data as stream, compute online

e  May require more computing and less bandwidth

e  Computation should be designed to be pipelined

* Establish fast data paths across cores/hosts

* Avoid low-level concurrency management

e  Portability, performance, portability of performance, maintenance, porting
from sequential



Quotes from P. Beckman EuroPar 11

“exascale” keynote

* coarse grain concurrency is nearly exhausted
* it 1s not about Flops, it is about data movement

* programming systems should be designed to
support fast data movement and enforce locality

* shared-memory & inter-socket messaging

* we need a programming model

* g computer language is not a computing model
a library is not a computing model

* we need a efficient and compositional run-time

18



Patterns/skeletons & streams

\ ~_

o - /
~

~—

/f’”' | M P P

OCamlP3L

BeOWUIF 1998

Shared

|

memory

rs-efmulti-cores andfiany-cores

\J

O

O {
C |
Q_ |
m !

~

c /

& /

=y |

D,

1

\



it is not about Flops, it is about data

movement, we need compositional run-time

e Streams

e focus on data movements at the prog model level
* clear semantics

e support compositionally and also locality

the latter is a bit more counter-intuitive
e High-level programming
* e.g. patterns
* [Patterns + streams

e can be implemented efficiently on both multi-core,
distributed, and both



http://mc-fastflow.sourceforge.net/


http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

FastFlow (multicore)

Applications on multicore, many-core
Efficient and portable - designed with high-level patterns

FastFlow

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

Multicore and manycore
SMP: cc-UMA & cc-NUMA
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Layer 1: Simple streaming networks

ta|I head

1
2
3

-
© 0 N O Ok

dynamic
linked list 14
of circular 6
buffers 17

int size = N; //SPSC size
bool push(voidx* data) {
if (buf_w—>full()) {
SPSCx t = pool.next_w();
if (!t) return false;
buf_w = t;
}
buf_w—>push(data);
return true;
}
bool pop(voids*x data) {
if (buf-r—>empty()) {

if (buf_r == buf_w) return false;

if (bufr—>empty()) {
SPSCx tmp = pool.next_r();
if (tmp) {
pool. release (buf_r);
buf_r = tmp;

}
}
}

return buf_r—>pop(data);

25 struct Pool {

26
27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 }

dSPSC inuse;
SPSC cache;

SPSCx next_w() {
SPSCx buf;
if (!cache.pop(&buf))
buf = allocateSPSC(size);
inuse . push(buf);
return buf;
}
SPSCx next_r() {
SPSCx buf;
return (inuse.pop(&buf)? buf : NULL);
}
void release(SPSCx buf) {
buf—>reset(); // reset pread and pwrite
if (!cache.push(buf))
deallocateSPSC(buf);
}

Fig. 3: Unbounded wait-free uSPSC queue implementation.

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati. An Efficient Synchronisation
Mechanism for Multi-Core Systems.

EuroPar 2012.

Wed 29 Aug - B3 multicore 14.30-16.00



Layer 1: Simple streaming networks

hitp://www.1024cores.net/home/technologies/fastflow

of the mapping

Throughput (msg/s)

4 sockets x 8 core x 2 contexts

Xeon E/-4820 @2.0GHz Sandy Bridge
| 8MB L3 shared cache, 256K |2

Speedup

" USPSC
dSPSC
dSPSC no cache

K

n. threads

25

e

Linked list + circular buffer
FastFlow queue
(our result)

| 2x faster

Linked list with pooling
Opt Michael-Scott queue
' (our result)

20x faster

Linked list w/ dyn alloc
Michael-Scott queue
well-known ~ 400 citations

V]

nanoseconds
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http://www.1024cores.org
http://www.1024cores.org

Layer 3: streaming networks patterns

* Composition via C++ template meta-programming

e CPU: Graph composition

farm_start

e GPU: CUDA streams / 47 \

copy_D2H copy_D2H copy_D2H

e CPU+GPU: offloading

: kelnel kelnel kelnel
O f ar m{ } — ‘—; copy_H2D copy_H2AD}py_H2D
O_’ O/, \f;m%start

C pipettarm, farm) —@C N
TN

* pipe(map, reduce) w

26




Layer 3: streaming networks patterns

e farm — an
o on CPU - master-worker - parallelism exploitation '/’ ‘_’ streamﬁ)]/Weilmm\s?ream[n]
o on GPU - CUDA streams - automatic exploitation of asynch o start
comm
* pipeline —(O—CO— ::;an;[zkll
e  on CPU - pipeline (orne
e on GPU - sequence of kernel calls or global mem synch copyYHQD

e  on CPU - master-worker - parallelism exploitation l z ‘/’ l

e on GPU - CUDA SIMT - parallelism exploitation

* reduce .\
= o«

e  on CPU - master-worker - parallelism exploitation
e on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

o D&C
e  on CPU - master-worker with feedback - / / exp101tat10n N

e on GPU - working on it, maybe loop+farm




Layer 3: streaming networks patterns

(easy to port)
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Applications on multicore, many core & distributed platforms of multicores
Efficient and portable - designed with high-level patterns

® ®
Streaming network patterns
I I U Skeletons: pipeline, map farm, reduce, D&C, ...

FastFlow

Arbitrary streaming networks Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes Collective communications + FF Dnodes
Simple streaming networks Simple streaming networks
Lock-free SPSC queues + threading model Zero copy networking + processes mode/

Multicore and manycore Distributed platforms
SMP: cc-UMA & cc-NUMA Clouds, clusters of SMPs

e Generic ff_node is subclassed to ff_dnode

* ff_dnode can support network channels

e P2P or collective
e used as frontier node of streaming graph

e can be used to merge graphs across distributed platforms
* No changes to programming model

e atleast require to “add” stub ff_dnode

e when passing pointers data is serialised

. serialisation hand-managed (zero-copy, think to Java!)

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati, P. Kilpatrick. Targeting distributed systems in FastFlow. Should be next talk!



CWC simulator example
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M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, M. Torquati, A. Troina. On designing multicore-aware simulators for biological systems. PDP 2011.
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main pipeline
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M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, E. Sciacca, S. Spinella, M. Torquati,
A. Troina. On parallelizing on-line statistics for stochastic biological simulations. In Euro-Par ‘ ; - '. " -

2011 Workshops, HiBB, vol 7155 of LNCS.
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Performance

preliminary)
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Involved data

* Simple examples (neurospora, ...)

® /-4 double * n. of variables * n. of samples x n.
of trajectories * cases 1n sensitivity analysis

® e.g.4*8*4*IM*1k*8 ~ 1 TBytes
* HIV 6GB x 1024 trajectories ~ 61B

* The more observed variables, precision,

cases for sensitivity analysis the more
data



Innovative Methods for Particle Colliders at the Terascale
(2012-2015)

IMBRACT

* CMS: Compact Muon Solenoid at CERN

e 3500 scientists, 180 Universities and Research Labs (40 countries)

° CMSis like a ~75 MegaPixels Digital Camera. 40M “photos” /s
Selection of 300 “photos’ /s ~450 MB /s from the detector are ~PBs
of data/year

* CERN has (of course) its well established data flow and
infrastructure, however ...
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Innovative Methods for Particle Colliders at the Terascale
(2012-2015, oversimplified vision)

@ 2 [ 1 )
o o
. o D o
huge data ( DI::'F | huge data .. \\/ R
somehow
e Monte Carlo simulation o
® o
o of “known” traces  _ o
o ° o o B o ° o
Preliminary results on Filtered data te Carlo simulati o
channel H=ZZ - 4| to be Gnqused | 4 onre "CII'bO |:SlmU arions
shown at Higg’s boson (much smaller) smaller but frequent
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Formalising the cell cycle switch
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unreplicated | @ _f
DNA

it ¥ active
MPF

dimers is left off the diagram to keep it simple.) (B) Positive
feedback loops. Active MPF stimulates its own production from
tyrosine-phosphorylated dimers by activating Cdc25 and
inhibiting Weel. We suspect that these signals are indirect, but
intermediary enzymes are unknown and we ignore them in this
paper. The signals from active MPF to Weel and Cdc25 generate
an autocatalytic instability in the control system. We indicate also
an ‘external’ signal from unreplicated DNA to Weel and Cdc25,
which can be used to control the efficacy of the positive feedback
loops. The letters a, b, ¢ and f are used to label the rate constants
for these reactions in Fig. 2. (C) Negative feedback loop. Active
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Direct competition: unstable switch

« x catalyzes the transformation of y into x
« y catalyzes the transformation of x into y

courtesy of Lued cavdelli

| | - y XX  own Switehes and OSGLLLa’tDYS P:ogmvw
X gquivalence tn Blology?
y+XxXoy+y .
http:/ llucacardelh.name

 This system is bistable, but —

o Convergence to a stable state is slow (a random walk).

o Any perturbation of a stable state can initiate a random -
walk to the other stable state.

\\\\\\\\\\\\\\\\\

o With 100 molecules of x and y, convergence > ,N#”'\'\’f; \ ].\w'
is quick, but with 10000 molecules, even at b Wbﬂf
the same concentration (adjusting the rate) i M"]
you will wait for a long time. TN

CWC S)’ni'ClX T:acr—l-gnza T:ca+1—0>cc
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... after
a number of transformations: a

: . .
stable switch faithfully modelling cell switch
itC

courtesy of Lued cavdelli

A oscillators Progravs
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The Shishi Odoshi ZThe 2AM Limit-Cycle Oscillator:

[ |
« A Japanese scarecrow (scare-deer) « Two AM switches in a Trammel pattern
o Used by Bela Novak to illustrate the cell cycle switch. l
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up?dn 2%0 y2 Pabphih A 4
—;;*y‘ < full TT_I _ |
T POOG =m ¥l
T, B ctions need to be slower
(even slightly) than the black reactions,
but otherwise the oscillation is robust.
Oscillation stops at 10 vs. 10 and 1 vs.
empty + tap > tap + full 10. Here the rates are 8 vs 10.0 top, and
up + fUII - fUII + dn http:/ /www.youtube.com/watch?v=VbvecTIftcE&NR=1&feature=fvwp 2 vs 10, bottom. N
gu” +dn > dn + empty (Simple limit-cycle oscillators in the
n + empty 2 empty + U To make it into a full trammel (dotted line), we ; . i .
Py Py P could make the up position mechanically open the literature have very critical rate ranges.) se6 we*nn =
tap (i.e. take up = tap) 3333’2
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L 1 Y
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e Demo: unstable switch
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number of "a" molecules
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# Molecules (Cl)

Bacteriophage A life cycle -G

. . . o 2 = 29
integration of a strand of DNA in = ===' = —— 4=
the molecule of E. coli DNA e
(multi-stable)
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Light Condition

Dark Condition

Transcriptional regulation in

Neurospora
(circadian clock period detection)

T:(z|FRQ X)" "2%Y (2 |FRQ X)" M T :M =5 M FRQ
T:M*e T:FRQS
T:FRQ(z | X)" = (z | FRQ X)"  T:(z|FRQ X)" -2 FRQ(z | X)"
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Conclusions

* Talk focused on programming model

¢ Many important“in a cloud” ignored in the talk:
middleware, faults, ...

e Data movement & high-level are key features

e  helps the mapping of features to platforms and performance portability
e ease the design

e  MapReduce is an instance, should be not the only one

* Formal biology at embryonal stage

* similar data & computation problems in analysis “in
vitro” experiments

* increasing interest from industrial and “core” bio
scientist for parallel computing
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