
Turning Big data into knowledge
Techniques and Tools for Parallel Computing on Online Data Streams in Systems Biology and Epidemiology

IMPACT BioBITs

Marco Aldinucci
University of Torino, Italy

Outline

• Stochastic Formal System Biology
• From Distributed to Multicore and back
• On programming models

• FastFlow

• The CWC parallel simulator for sys bio
• Some preliminary results

Formal synthetic system biology

?

System Biology & Gillespie’s algorithm

• Traditionally studied with continuous ordinary
differential equations (ODE)

• bulk reactions, i.e. average behaviour

• Gillespie algorithm: discrete and stochastic
simulation of a system via explicit simulation
of each reaction

• Gillespie realization represents a random walk
that exactly represents the distribution of the
master equation (i.e. ODEs)

• under some hypothesis

http://en.wikipedia.org/wiki/Master_equation
http://en.wikipedia.org/wiki/Master_equation

 Gillespie’s algorithm [77]
1. Initialization: Initialize the number of molecules in the

system, reactions constants, and random number
generators.

2. Monte Carlo step: Generate random numbers to
determine the next reaction to occur as well as the time
interval. The probability of a given reaction to be chosen
is proportional to the number of substrate molecules.

3. Update: Increase the time step by the randomly
generated time in Step 2. Update the molecule count
based on the reaction that occurred.

4. Iterate: goto Step 2 unless the number of reactants is zero
or the simulation time has been exceeded.

Increasingly popular approach

• Sometime more informative than (ODE)
• multi-stability, divergent or rare behaviours,

peaks, ...
• multi-scale systems

• e.g. deriving macro behaviour from micro

• More computational demanding
• much more, especially in motivating cases

Increasingly popular approach
• Bio-PEPA [Hillston, Ciocchetta]
• SPiM [Cardelli, Phillips]
• Stochastic Pi [Priami]
• Stochkit [Petzold]
• Spatial Pi [Uhrmacher]
• Calculus of Wrapped Components [our own]

• kinetics: mass-action, Michaelis–Menten, Hill ...

• ...

http://mc-fastflow.sourceforge.net

BioBITs

Introduction
SCWC

Conclusions

The Calculus
The Simulator
A Case Study

The Calculus of Wrapped Compartments (CWC)

A term is intended to represent a biological system. A term is
built by means of the compartment constructor, (�⇤�), from a
set E of atomic elements, ranged over by a, b, c , d . A simple
term is defined as:

t ::= a
�� (a ⇤ t)

We write t to denote a (possibly empty) multiset of simple terms
t1 . . . tn. Similarly, with a we denote a (possibly empty) multiset of
atoms.

M. Coppo, F. Damiani, M. Drocco, E. Grassi, A. Troina Stochastic Calculus of Wrapped Compartments

Introduction
SCWC

Conclusions

The Calculus
The Simulator
A Case Study

Examples of SCWC terms

(i) represents (a b c ⇥ •);
(ii) represents (a b c ⇥ (d e ⇥ •));
(iii) represents (a b c ⇥ (d e ⇥ •) f g).

M. Coppo, F. Damiani, M. Drocco, E. Grassi, A. Troina Stochastic Calculus of Wrapped Compartments
Introduction

SCWC
Conclusions

The Calculus
The Simulator
A Case Study

Dynamics of SCWC

Rewrite rules are defined as pairs of terms, in which the left term
characterizes the portion of the system in which the event
modelled by the rule can occur, and the right one describes how
that portion of the system is changed by the event.

Biomolecular Event Examples of CWC Rewrite Rules

State change a ⇥� b
Complexation a b ⇥� c
Catalyzed a (b x ⇤ y) ⇥� (b x ⇤ a y)
membrane crossing (b x ⇤ a y) ⇥� a (b x ⇤ y)

M. Coppo, F. Damiani, M. Drocco, E. Grassi, A. Troina Stochastic Calculus of Wrapped Compartments

Introduction
SCWC

Conclusions

The Calculus
The Simulator
A Case Study

Stochastic Rules

Rules are decorated with a rate (speed of the reaction).

A Stochastic Rewrite Rule, R, is denoted by P
k⇤⇥ P 0.

The stochastic semantics is given by transitions between terms
labeled with the rule applied, R, and a transition rate depending
on the rate of rule R:

t
R,k⇥p�⇥ t 0

where R is P
k⇤⇥ P 0, and p is the number of di�erent ways in which

the pattern P may match t (t = C [P�]) and such that
t 0 = C [P 0�] for some context C and variable instantiation �.

M. Coppo, F. Damiani, M. Drocco, E. Grassi, A. Troina Stochastic Calculus of Wrapped Compartments

Ex: HIV and immune response
(progression to AIDS)

U

V4

Z5
T

Z4

V5

F

I4

λ
δuf

δut

δuz

δtf

I5
βX4

βR5

γR5

γX4

σ2

σ2

δiz

δiz

σ3

π

π

μ

V virus, all phenotypes (V4,V5)

the spike suggests the mutation
V5 →V4 (more aggressive)

immune response Z=Z4+Z5
remain stable (but for the peak).

now Z4 decrease and
Z5 increase

i.e. HIV is turning into
AIDS more rapidly

M. Aldinucci, A. Bracciali, P. Liò, A. Sorathiya, and M. Torquati. StochKit-FF: Efficient systems biology on multicore architectures. In High Performance
Bioinformatics and Biomedicine (HiBB), vol. 6586 of LNCS, 2011. Springer.

• Peaks are informative events,
• virus mutation triggers AIDS progression
• hardly detected with ODEs

• high resolution required to detect spikes,
• each trajectory can be over 6G Bytes of data

• and thousands of trajectories are needed
• compute everything, save everything, move and

join all data, analyse all data, then get first results
• often to discover parameters are wrong ...

• It is Monte Carlo,
• well understood
• easy to parallelise on different trajectories

• it is Monte Carlo w Markov Chains models (CTMC)
• single trajectory: no parallelisation without relaxation
• compute time ≠ simulation time
• compute time for different trajectories heavily unbalanced

• fast reactions and slow reactions, some not interesting (e.g. water-steam-water)

Unbalancing + filtering

• few trajectories (e.g. the interesting ones) can
significantly delay the completion of others

• over-provisioning don’t help that much
• simulated time moves at different pace w.r.t. wall-

clock time
• data joining from different trajectories should be

aligned at the same simulation time
reducereduce reducereduce

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4 d1 d2 d3 d4

e1 e2 e3 e4 f1 f2 f3 f4

{a,b}@P1

{c,d}@P2

{e,f}@P3

a1 b1

c1

e1

d1

f1

b2

c2

e2 f2

b3

a2

d2

e3 f3

c3

b4

d3

a3 e4

f4c4 d4

a4

{a,b}@P1

{c,d}@P2

{e,f}@P3

idle

F(a,...,f)

F(a,...,f)

idle

a1 b1

c1

e1

d1

f1

b2

c2

e2 f2

b3

a2

d2

e3 f3

c3

b4

d3

a3 e4

f4c4 d4

a4

{a,b}@P1

{c,d}@P2

{e,f}@P3

F2(a,...f)

simulationwall-clock
time

trajectory reduction

gain
F1(a,...f)

F3(a,...f)

F4(a,...f)

ii)

iii)

i)

1's runs 2's runs 4's 3's

• It is Monte Carlo,
• well understood
• easy to parallelise on different trajectories

• it is Monte Carlo w Markov Chains models (CTMC)
• single trajectory: no parallelisation without relaxation
• compute time ≠ simulation time
• compute time for different trajectories heavily unbalanced

• fast reactions and slow reactions, some not interesting (e.g. water-steam-water)

• it is Monte Carlo AND data analysis
• data is big, analysis can be very expensive and it typically starts

after the simulation
• the whole workflow is perceived too “slow” by bio-scientists to

be really useful

Collector
Traiectories

Post-processing
e.g. parsing

Disk

From Distributed to Multicore and back

Rebalance

In BioSims the whole
trajectory is needed, easily

GB of data

The whole dataset, TB of
data, should be re-read to
extract statistical estimators

Scheduler
Parameter

Sweep

Model
description

Pre-processing
e.g. parsing

Worker n
run simulations

Worker 1
run simulations

one or more
simulation
instance

one or more
simulation
instance

Disk 1

Disk n

From Distributed to Multicore and back

Rebalance
Scheduler
Parameter

Sweep

Model
description

Pre-processing
e.g. parsing

Worker n
run simulations

Worker 1
run simulations

one or more
simulation
instance

one or more
simulation
instance

Disk 1
Collector

Traiectories
Post-processing

e.g. parsing

Now the issue become a real problem
Bottlenecks: disk and memory
Post-processing: not pipelined and
often not parallel at all

From Distributed to Multicore and back

• Multi Carlo sims for Bio are I/O-bound
• Sampling reduce I/O traffic but worsen precision and

analysis of “strange” dynamics (spikes, diversion from
average, etc.), which observation motivates stochastic
analysis (ODEs)

• Data analysis is also I/O-bound
• if approached is a “post-processing” fashion, data should be

retrieved from the disks

• The porting of distributed solution “as is” on multicore
is going insist on weakness of multicore architectures

• Memory wall, I/O, disk
• SIMD/GPGPUs do not change the analysis substantially

From Distributed to Multicore and back

• The same arguments holds on distributed, grids,
and clouds as soon as the workflow is considered
as a whole

• simulation, data collection and merging, analysis

• Rationale
• Manage data as stream, compute online

• May require more computing and less bandwidth
• Computation should be designed to be pipelined

• Establish fast data paths across cores/hosts

• Avoid low-level concurrency management
• Portability, performance, portability of performance, maintenance, porting

from sequential

Quotes from P. Beckman EuroPar 11
“exascale” keynote

• coarse grain concurrency is nearly exhausted

• it is not about Flops, it is about data movement

• programming systems should be designed to
support fast data movement and enforce locality

• shared-memory & inter-socket messaging

• we need a programming model

• a computer language is not a computing model
a library is not a computing model

• we need a efficient and compositional run-time

18

Shared
memory

Macro
Data
Flow

Beowulf

Grid

MPP

Autonomic

19

P3L
1991

SKiE
1997

OCamlP3L
1998

SKElib
2000

Lithium
2002

Muskel
2006

FastFlow
2009

Eskimo
2003

ASSIST
2001

ASSISTant
2008

GCM
2008

G
PG

PU
s

Clouds, clusters of multi-cores and many-cores

Patterns/skeletons & streams

it is not about Flops, it is about data
movement, we need compositional run-time

• Streams
• focus on data movements at the prog model level
• clear semantics
• support compositionally and also locality

• the latter is a bit more counter-intuitive

• High-level programming
• e.g. patterns

• Patterns + streams
• can be implemented efficiently on both multi-core,

distributed, and both

FastFlow
http://mc-fastflow.sourceforge.net/

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

FastFlow (multicore)

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA & cc-NUMA

Applications on multicore, many-core
Efficient and portable - designed with high-level patterns

Layer 1: Simple streaming networks
4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge
18MB L3 shared cache, 256K L2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on different cores same CPU

1.50 1.37 0.83

1.33
0.75 0.82 0.50 0.46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e
c
o

n
d

s

buffer size

P and C on different CPUs

3.33
3.15

2.23

2.91

3.56

4.08

2.43

2.76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on same core distinct contexts

0.19 0.14 0.12 0.11 0.09 0.11 0.11 0.11

different sockets

MPI is ~190 ns at best
(D.K. Panda)

same socket same core different contexts same socket different cores different

Layer 1: Simple streaming networks

DR
AF
T

1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati. An Efficient Synchronisation
Mechanism for Multi-Core Systems.

EuroPar 2012.
Wed 29 Aug - B3 multicore 14.30-16.00

tail head

dynamic
linked list
of circular

buffers

P C

Layer 1: Simple streaming networks
http://www.1024cores.net/home/technologies/fastflow

S2

S3 S4

S1 Sn

...

25

50K

100K

150K

200K

1 8 16 24 32 40 48 56 64

T
h
ro

u
g
h

p
u
t
(m

sg
/s

)

n. threads

uSPSC
dSPSC

dSPSC no cache

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge
18MB L3 shared cache, 256K L2

Linked list w/ dyn alloc
Michael-Scott queue

well-known ~ 400 citations 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

64 1024 8192

n
a
n
o
se

co
n
d
s

buffer size

mapping 1
mapping 2
mapping 3

Linked list with pooling
Opt Michael-Scott queue

(our result)

20x faster

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a
n
o
se

co
n
d

s

buffer size

mapping 1
mapping 2
mapping 3

Linked list + circular buffer
FastFlow queue

(our result)

12x faster

same core
same socket
different sockets

Speedup

<35 ns irrespectively
of the mapping

http://www.1024cores.org
http://www.1024cores.org

Layer 3: streaming networks patterns

• Composition via C++ template meta-programming

• CPU: Graph composition

• GPU: CUDA streams

• CPU+GPU: offloading

• farm{ pipe }

• pipe(farm, farm)

• pipe(map, reduce)

•
26

copy_D2H

kernel

copy_H2D

farm_start

copy_D2H

kernel

copy_H2D

copy_D2H

kernel

copy_H2D

farm_start

• farm
• on CPU - master-worker - parallelism exploitation
• on GPU - CUDA streams - automatic exploitation of asynch

comm

• pipeline
• on CPU - pipeline
• on GPU - sequence of kernel calls or global mem synch

• map
• on CPU - master-worker - parallelism exploitation
• on GPU - CUDA SIMT - parallelism exploitation

• reduce
• on CPU - master-worker - parallelism exploitation
• on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

• D&C
• on CPU - master-worker with feedback - // exploitation
• on GPU - working on it, maybe loop+farm

Layer 3: streaming networks patterns

stream[k]

copy_D2H

kernel

copy_H2D

stream[0]

farm_start

stream[1] stream[n]

farm_start

Layer 3: streaming networks patterns
(easy to port)

+ distributed

• Generic ff_node is subclassed to ff_dnode
• ff_dnode can support network channels

• P2P or collective
• used as frontier node of streaming graph
• can be used to merge graphs across distributed platforms

• No changes to programming model
• at least require to “add” stub ff_dnode
• when passing pointers data is serialised

• serialisation hand-managed (zero-copy, think to Java!)

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati, P. Kilpatrick. Targeting distributed systems in FastFlow. Should be next talk!

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA & cc-NUMA

Applications on multicore, many core & distributed platforms of multicores
Efficient and portable - designed with high-level patterns

Distributed platforms
Clouds, clusters of SMPs

Simple streaming networks
Zero copy networking + processes model

Arbitrary streaming networks
Collective communications + FF Dnodes

CWC simulator example

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

reducereduce reducereduce

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4 d1 d2 d3 d4

e1 e2 e3 e4 f1 f2 f3 f4

{a,b}@P1

{c,d}@P2

{e,f}@P3

a1 b1

c1

e1

d1

f1

b2

c2

e2 f2

b3

a2

d2

e3 f3

c3

b4

d3

a3 e4

f4c4 d4

a4

{a,b}@P1

{c,d}@P2

{e,f}@P3

idle

F(a,...,f)

F(a,...,f)

idle

a1 b1

c1

e1

d1

f1

b2

c2

e2 f2

b3

a2

d2

e3 f3

c3

b4

d3

a3 e4

f4c4 d4

a4

{a,b}@P1

{c,d}@P2

{e,f}@P3

F2(a,...f)

simulationwall-clock
time

trajectory reduction

gain
F1(a,...f)

F3(a,...f)

F4(a,...f)

ii)

iii)

i)

1's runs 2's runs 4's 3's

M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, M. Torquati, A. Troina. On designing multicore-aware simulators for biological systems. PDP 2011. 2011. IEEE.

time

tra
je
ct
or
ie
s Trajectory 1

Trajectory n

...

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

time

tra
je
ct
or
ie
s

simulation-time aligned trajectories

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

time

tra
je
ct
or
ie
s

dispatch

task

task

task

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

sim
eng

ga
th
er

sim
eng

di
sp

ta
ch

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
er

mean variance

quantiles

QT clusters

k-means

M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, E. Sciacca, S. Spinella, M. Torquati,
A. Troina. On parallelizing on-line statistics for stochastic biological simulations. In Euro-Par
2011 Workshops, HiBB, vol 7155 of LNCS.

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

sim
eng

ga
th
er

sim
eng

di
sp

ta
ch

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
ersim

eng

ga
th

er

sim
eng

di
sp

ta
ch

sim farm

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

(s
ca

tte
r p

ro
du

ce
r)

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
er

simulation pipeline (host 1)

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

sim farm

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
er

simulation pipeline (host n) al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

(s
ca

tte
r c

on
s)

farm of simulation
pipelines

(distributed)

main pipeline (host 0)

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

(s
ca

tte
r p

ro
du

ce
r)

Sc
at

te
r c

on
su

m
er

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
er

Fr
om

An
y

pr
od

uc
er

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

(s
ca

tte
r c

on
s)

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

sim farm

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

(s
ca

tte
r p

ro
du

ce
r) stat

eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
er

simulation pipeline (host 1)

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

sim farm

Sc
at

te
r c

on
su

m
er

Fr
om

An
y

pr
od

uc
er

simulation pipeline (host n) al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

(s
ca

tte
r c

on
s)

farm of simulation
pipelines

(distributed)

start new simulations, steer and terminate running simulations

main pipeline (host 0)

serialisation, coalescing
allocation (zero-copy 0MQ), de-

serialisation

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

analysis pipeline
main pipeline

sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f

tra
je

ct
or

ie
s

ge
ne

ra
tio

n
of

si

m
ul

at
io

n
ta

sk
s stat

eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n
of

sl

id
in

g
w

in
do

w
s

of
 tr

aj
ec

to
rie

sraw
simulation

results display of
results

Graphical

User
Interface

meanvariance k-means

filtered
simulation

results

stat
eng

simulation pipeline analysis pipeline

start new simulations, steer and terminate running simulations

main pipeline

Performance
(preliminary)

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30

sp
ee

du
p

n. sim. workers

ideal
128 trajectories
512 trajectories

1024 trajectories
 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30

sp
ee

du
p

n. sim. workers

ideal
128 trajectories
512 trajectories

1024 trajectories

Intel
Nehalem
32-core

1 stat engine 4 stat engines

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

sp
ee

du
p

aggreated n. of cores

ideal
2 cores per host
4 cores per host

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

n.of hosts

ideal
2 cores per host
4 cores per host

Cluster 8x
Intel Xeon 6-core
Infinband (IPoIB)

courtesy of
Mellanox

4 stat engines 1024 trajectories4 stat engines 1024 trajectories

Involved data

• Simple examples (neurospora, ...)
• 2-4 double * n. of variables * n. of samples x n.

of trajectories * cases in sensitivity analysis
• e.g.4*8*4*1M*1k*8 ~ 1 TBytes

• HIV 6GB x 1024 trajectories ~ 6TB
• The more observed variables, precision,

cases for sensitivity analysis the more
data

• CMS: Compact Muon Solenoid at CERN
• 3500 scientists, 180 Universities and Research Labs (40 countries)
• CMS is like a ~75 MegaPixels Digital Camera. 40M “photos”/s

Selection of 300 ‘photos’/s ~450 MB/s from the detector are ~PBs
of data/year

• CERN has (of course) its well established data flow and
infrastructure, however ...

IMPACT Innovative Methods for Particle Colliders at the Terascale
(2012-2015)

IMPACT Innovative Methods for Particle Colliders at the Terascale
(2012-2015, oversimplified vision)

huge data Diff
(somehow)

Monte Carlo simulation
of “known” traces

Filtered data
to be analysed

(much smaller)

huge data

Particle physicists Theoretic physicists

new knowledge

Monte Carlo simulations
smaller but frequent

requires great “reactivity”
of the workflow to tune models

new speculations

Preliminary results on
channel H→ZZ→4l

shown at Higg’s boson
claim Jul 2012

(Amapane at al.)

Formalising the cell cycle switch

•
•

•
o
o

o

 →
 →

Direct competition: unstable switch

CWC syntax

Courtesy of Luca Cardelli

On Switches and Oscillators Program

Equivalence in Biology?

http://lucacardel
li.name

http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name

... after a number of transformations: a
stable switch faithfully modelling cell switch

CWC
syntax

Courtesy of Luca Cardelli

On Switches and Oscillators Program

Equivalence in Biology?

http://lucacardel
li.name

http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name
http://lucacardelli.name

•

o

•
o

o

•
o

•

o

•

o

•

• Demo: unstable switch

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 5 10 15 20

K-
m

ea
ns

 c
lu

st
er

s
on

 m
ol

ec
ul

es
 (a

)

time

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20

nu
m

be
r o

f "
a"

 m
ol

ec
ul

es

time

raw simulations
standard deviation

mean

Schlögl model
autocatalytic, trimolecular reaction
scheme (bistable)

Bacteriophage λ life cycle
integration of a strand of DNA in
the molecule of E. coli DNA
(multi-stable)

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

M

ol
ec

ul
es

 (C
I)

time

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

Q
T

 c
lu

st
e

rs
 w

ith
 t

re
n

d
s

(C
I)

time

Transcriptional regulation in
Neurospora
(circadian clock period detection)

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

dark light dark light

Pe
ak

 fr
eq

ue
nc

y

Light condition phases

 0

 200

 400

 600

 800

 1000

Li
gh

t C
on

di
tio

n

 0

 200

 400

 600

 800

 1000

0 50 100 150 200

D
ar

k
C

on
di

tio
n

Time in hours

Conclusions
• Talk focused on programming model

• Many important“in a cloud” ignored in the talk:
middleware, faults, ...

• Data movement & high-level are key features
• helps the mapping of features to platforms and performance portability
• ease the design
• MapReduce is an instance, should be not the only one

• Formal biology at embryonal stage
• similar data & computation problems in analysis “in

vitro” experiments
• increasing interest from industrial and “core” bio

scientist for parallel computing

• FastFlow
• Massimo Torquati (Pisa), Marco Danelutto (Pisa), Peter Kilpatrick

(Belfast), Massimiliano Meneghin (IBM Research Dublin)

• Case studies, biological models
• Luca Cardelli (Microsoft), Pietro Liò (Cambridge), Andrea

Bracciali (Stirling), Cristina Calcagno (Torino)

• CWC simulation implementation
• Maurizio Drocco (Torino), Fabio Tordini (Torino)

• CWC language design
• Maurizio Drocco, Eva Sciacca, Salvatore Spinella, Mario Coppo,

Angelo Troina, Ferruccio Damiani (Torino)

• Graphical User Interface
• ETICA company

• Infiniband cluster and computing facilities
• Mellanox, HPC Advisory Council

Acknowledgements

IMPACT

BioBITs

