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Outline

✴ Concurrency and multi-core, the theoretical 
background
✦ a personal perspective

✴ FastFlow
✦ A programming model (and a library) for multicore (& manycore)

✦ Fast core-to-core lock-free messaging

✴ Applications 

✴ Discussion

2



`````````````

Our tool perspective

Shared
memory

Macro 
Data Flow

Beowulf

Grid

MPP

Autonomic

3

P3L
1991

SKiE
1997

OCamlP3L
1998

SKElib
2000

Lithium
2002

Muskel
2006

FastFlow
2009

Eskimo
2003

ASSIST
2001

ASSISTant
2008

GCM
2008

G
PG

PU
s



Concurrency and multi-core
theoretical background: a personal 

perspective

4



sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f 

tra
je

ct
or

ie
s

ge
ne

ra
tio

n 
of

 
si

m
ul

at
io

n 
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations 

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n 
of

 
sl

id
in

g 
w

in
do

w
s 

of
 tr

aj
ec

to
rie

sraw 
simulation

results display of
results

---
Graphical

User
Interface

meanvariance k-means

filtered 
simulation

results

stat
eng

analysis pipeline
main pipeline

Parallel stochastic sim for system biology 
IEEE PDP 2011, HiBB 2011, Briefings in Bioinformatics (invited), Bio-IT 
world (invited), IEEE PDP 2013 (submitted), BMC Bioinformatics 
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Simulation of transcriptional regulation in Neurospora

Parallel stochastic sim for system biology 
IEEE PDP 2011, HiBB 2011, Briefings in Bioinformatics (invited), Bio-IT 
world (invited), IEEE PDP 2013 (submitted), BMC Bioinformatics 

6M. Aldinucci et al. On designing multicore-aware simulators for biological systems. PDP 2011. 2011. IEEE.
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Nowadays

✴E.g. Intel Ivybridge, Haswell
✴ cache-coherent 
✴ 12 or more core per socket (20 contexts)
✴ cc-NUMA (as matter of a fact)

✴NVidia/AMD GPGPU/Hybrid
✴ SIMD, no global synch
✴ performance only with proper and not fully 

automatic memory hierarchy management 

✴ Intel MIC CPU/GPGPU
✴ ring-based interconnection, variable coherency
✴ apparently even more NUMA

✴ IBM powerEN
✴ general purpose cores
✴ specialised cores, soft cores?
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From programming/tuning viewpoint ...
the simplest is already too complex ...

✴ Exploit cache coherence
✦ Memory fences are expensive, increasing core count will make it 

worse

✴ Fine-grained parallelism is hard to achieve
✦ I/O bound problems, High-throughput, Streaming, Irregular DP 

problems

✦ Automatic and assisted parallelisation solves uniform&easy cases

✴ SIMD/GPGPU worsen the scenario 
✦ Atomic ops in memory (i.e. fences) are still needed 

✦ Not everything can be described with do independent (a.k.a. map)
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Micro-benchmarks: farm of tasks

void Emitter () { 
for ( i =0; i <streamLen;++i){ 
task = create_task (); 
queue=SELECT_WORKER_QUEUE(); 
queue −>PUSH(task); 

} 
} 

void Worker() { 
while (!end_of_stream){ 
myqueue −>POP(&task); 
do_work(task) ; 
} 

} 

int main () { 
spawn_thread( Emitter ) ; 
for ( i =0; i <nworkers;++i){ 
spawn_thread(Worker); 

} 
wait_end () ; 

} 
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Used to implement: parameter sweeping, master-worker, etc.

9



Task farm with POSIX lock/unlock 
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Can we avoid locks?

✴  Under relaxed memory models, using CAS/RW-ops
✦ nonblocking algorithms

✦ they perform better than lock-based

✦ they fence the memory and pay cache coherency reconciliation 
overhead

✦ in GPUs ...

• CAS/atomic ... you have to go to the global memory
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Lock vs Nonblocking CAS (fine grain 0.5 μS)
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Re-starting from the basics

✴ Reducing the problem to the bare bones
✦ Producer-Consumer model (streaming)

✦ Directly control thread blocking using non-blocking 
synchronisations

✦ Directly design the “data channel” 

• Having clear how data move in the whole memory hierarchy

✴ Restarting from the FIFO queue P C
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Producer-Consumer
✴ Producer-Consumer queues

✦ fundamental data structures in concurrent systems

• data/message channels synchronization, task scheduling, ...

• work-stealing mechanisms (e.g. for OpenMP runtime)

✴ Producer-Consumer vs Mutual Exclusion 
✦ Mutex is inherently more complex (requires deadlock-freedom) 

• require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

• Dekker and Bakery algorithms requires Sequential Consistency 

• Producer Consumer is a cooperative (non cyclic) process

✴ Producer-Consumer vs Transactional Memories (?)
✦ To be tested extensively, interesting to understand what happens when data is  

moved to another core (get an invalidation?)

✦ Transactions happens at cache line level (IBM/BlueGene) or blocking decode unit 
(IBM/PPC x86_64/ring0 wait on reservation)

14



Concurrent queues

✴ Concurrency level 
✦ SPSC, SPMC, MCSP, MPMC

✴ Internal data structures
✦ Array-based, List-based

✴ Size 
✦ Bounded, Unbounded

✴ Progress guarantees
✦ No guarantee (blocking), Obstruction freedom, Lock freedom, 

Wait freedom
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Blocking vs non-blocking

✴ What are the performance implications of the 
progress properties ?

✴ For medium/coarse grain applications:
✦ Blocking faster than Non-Blocking 

✴ For fine grain applications:
✦ Non-Blocking faster than Blocking

✦ Obstruction-Free faster than Lock-Free faster than Wait-Free

✴ In the general case:
✦ Stronger properties are harder to maintain
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Related Work: Lock-free, CAS-free, wait-free

✴ Single-Producer-Single-Consumer FIFO queues 
✦ Lamport et al. 1983 Trans. PLS (Sequential consistency only - in memory)

✦ Higham and Kavalsh. 1997 ISPAN (P1C1 - TSO + proof -  in memory)

✦ Giacomoni et al. 2008 PPoPP (TSO + cache slipping - in memory)

✦ BatchQueue & MCRingBuffer (TSO, double/multiple-buffering - in memory)

✴ Multiple-Producers-Multiple-Consumers FIFO queues
✦ Blocking 2-locks  - Michael and Scott

✦ Nonblocking with CAS  - list-based - Michael and Scott (PODC96)

• Requires deferred reclamation/hazard pointers to avoid ABA problem

✦ Nonblocking with CAS  - array-based - Tsigas and Zhang (PAA01)

✦ Nonblocking without CAS - in memory ➠ Cannot be done

✦ Nonblocking without CAS - with mediator thread ➠ FastFlow
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Recap: coherence and consistency

✴ Memory/Cache Coherence
✦ Deal with multiple replicas of the same location in different caches

✴ Memory Consistency
✦ Deal with the ordering in which writes

and reads at different locations 
take effect in memory (issued by either 
the same or different processors/cores)
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Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997) 

 & FastForward (Giacomoni et al, PPoPP 2008)
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Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997) 

 & FastForward (Giacomoni et al, PPoPP 2008)

head and tail are 
mutually invalidated by 

producer and consumer
1 cache miss every push 

and pop (at least)
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Lock vs CAS vs SPSC FastFlow (50 μS)
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Lock vs CAS vs SPSC FastFlow (5 μS)
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Lock vs CAS vs SPSC FastFlow (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

22



Medium grain (5 μS workload)
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Layer 1: Simple streaming networks

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge 
18MB L3 shared cache, 256K L2
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Layer 1: Simple streaming networks
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Layer 1: Simple streaming networks

DR
AF
T

1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati.  An Efficient Synchronisation 
Mechanism for Multi-Core Systems. 

EuroPar 2012.
Wed 29 Aug - B3 multicore 14.30-16.00 

tail head

dynamic
linked list
of circular

buffers

P C
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Layer 1: Simple streaming networks 
http://www.1024cores.net/home/technologies/fastflow
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Unbound queues are useful

✴ Faster than posix, often faster than hoard 
and TBB

✦ unpublished, but available on sourceforge

✦ needs lot of comparative testing to be published

✴ Implements deferred deallocation to avoid 
ABA problem

FF  allocator
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FastFlow
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Lock-free and CAS-free?

✴ Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done
✦ Producer-Consumer is inherently weaker with respect to Mutex 

✦ It does require the cooperation of partners whereas Mutex does not

✴ Expressive enough to build a streaming (or dataflow) 
programming framework
✦ MPMC = SPSC + mediator threads

✴ But what about productivity at large scale?
✦ Write a program is defining a graph encoding true dependencies ... not 

really easy

29



FastFlow is based on producer-consumer

✦ Lock-free/fence-free non-blocking synchronisations

✦ C++ STL-like implementation

✦ thread-model agnostic (pthreads, QT, windows threads, ...)

✦ compliant with other synchronisation mechanisms in the business code (e.g. locks and 
semaphores)

30

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model 

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues 

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...
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Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...
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Pattern-based approach: rationale

✴ Abstract parallelism exploitation pattern by parametric code
✦ E.g. higher order function, code factories, C++ templates, ...

✦ Can composed and nested as programming language constructs + offloading

✦ Stream and Data Parallel

✴ Platform independent
✦ Implementations on different multi/many-cores

✦ Support for hybrid architectures thanks to pattern compositionality

✴ Provide state-of-the-art, parametric implementation of each 
parallelism exploitation pattern
✦ With natural way of extending patterns, i.e. OO

✦ Functional (seq code) and tunable extra-functional (QoS) parameters
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✴ farm
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA streams - automatic exploitation of asynch comm 

✴ pipeline
✦ on CPU - pipeline

✦ on GPU - sequence of kernel calls or global mem synch

✴ map
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT - parallelism exploitation

✴ reduce
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

✴ D&C
✦ on CPU - master-worker with feedback - // exploitation

✦ on GPU - working on it, maybe loop+farm

Patterns, their implementation, and their 
purpose

32
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Composition

✴ Composition via C++ template meta-programming

✦ CPU: Graph composition

✦ GPU: CUDA streams

✦ CPU+GPU: offloading

✴ farm{ pipe }

✴ pipe(farm, farm)

✴ pipe(map, reduce)

✴ ....
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#include <vector>
#include <iostream>
#include <ff/farm.hpp>

using namespace ff;

// generic worker
class Worker: public ff_node {
public:
    void * svc(void * task) {
        int * t = (int *)task;
        std::cout << "Worker " << ff_node::get_my_id() 
                  << " received task " << *t << "\n";
        return task;
    }
    // I don't need the following functions for this test
    //int   svc_init() { return 0; }
    //void  svc_end() {}

};

// the gatherer filter
class Collector: public ff_node {
public:
    void * svc(void * task) {
        int * t = (int *)task;
        if (*t == -1) return NULL;
        return task;
    }
};

// the load-balancer filter
class Emitter: public ff_node {
public:
    Emitter(int max_task):ntask(max_task) {};

    void * svc(void *) {    
        int * task = new int(ntask);
        --ntask;
        if (ntask<0) return NULL;
        return task;
    }
private:
    int ntask;
};

int main(int argc, char * argv[]) {

    if (argc<3) {
        std::cerr << "use: " 
                  << argv[0] 
                  << " nworkers streamlen\n";
        return -1;
    }
    
    int nworkers=atoi(argv[1]);
    int streamlen=atoi(argv[2]);

    if (!nworkers || !streamlen) {
        std::cerr << "Wrong parameters values\n";
        return -1;
    }
    
    ff_farm<> farm; // farm object
    
    Emitter E(streamlen);
    farm.add_emitter(&E);

    std::vector<ff_node *> w;
    for(int i=0;i<nworkers;++i) w.push_back(new Worker);
    farm.add_workers(w); // add all workers to the farm

    Collector C;
    farm.add_collector(&C);
    
    if (farm.run_and_wait_end()<0) {
        error("running farm\n");
        return -1;
    }
    std::cerr << "DONE, time= " << farm.ffTime() << " (ms)\n";
    farm.ffStats(std::cerr);

    return 0;
}
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+ distributed

✴ Generic ff_node is 
subclassed to ff_dnode

✴ ff_dnode can support network channels
✦ P2P or collective

✦ used as frontier node of streaming graph

✦ can be used to merge graphs across distributed platforms

✴ No changes to programming model
✦ at least require to “add” stub ff_dnode
✦ when passing pointers data is serialised

• serialisation hand-managed (zero-copy, think to Java!)

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati, P. Kilpatrick.  Targeting distributed systems in FastFlow. CGW-Europar 2012

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA  & cc-NUMA 

Applications on multicore, many core & distributed platforms of multicores
Efficient and portable - designed with high-level patterns

Distributed platforms
Clouds, clusters of SMPs

Simple streaming networks
Zero copy networking + processes model

Arbitrary streaming networks
Collective communications  + FF Dnodes
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+ OpenCL (working on)
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FastFlow: data-flow, not task-based

✦ FastFlow is NOT a task based framework, focus specifically on 
data movements and synchronizations (shmem/distr/GPU) 

✦ it does not expose the task concept, it rather abstracts:

• networks of nodes (threads/processes) that can synchronize efficiently (via message 
passing) and move data (via shared memory or message passing)

• predefined, OO extendable, composable patterns (i.e. networks of nodes)

✦ orthogonal way of thinking w.r.t. tasks

• nodes are pinned to core, no over-provisioning, ...

✦ it can middleware to build your own task based framework

• inherit lock-free synchronization mechanisms (that aren’t friendly guys) 

• just create an object, and pass the pointer

• predefined facilities to manage load-balancing, data-placement, OO-extendable
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Summary

✴ Patterns at the high-level
✦ Currently as C++ templates

✦ Set of patterns can be extended, semantics of patterns can be 
changed, complexity gracefully increase with semantic distance

✴ Used to generate cyclic streaming networks (of 
threads, ...)
✦ Graphs, describing true data dependencies. Can be composed and 

transformed as graphs

✦ Cyclic graphs need unbound queue

✦ Heterogeneous cores, thread affinity, memory affinity, NUMA, can 
be managed while mapping graph onto the metal
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Thoughts: on programming models ...

✴ “Coarse grain concurrency is nearly exhausted”

✴ “It is not about Flops, it is about data movement”

✴ “Programming systems should be designed to 
support fast data movement and enforce locality”

✴ “Variable coherency & inter-socket messaging”

✴ “Novel computing models are needed”
✦ “A computer language is not a computing model.  A library is not a 

computing model.”

✦ “System programmers should use the techniques they advocate”
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Thoughts: on programming models ...

✴ Hardware Transactional Memory
✦ Intel Haswell Transactional Synchronization Extensions (TSX)

✦ Pragmatically orthogonal and complementary to data-flow

• Data-flow covers (true) data-dependencies, i.e. data passing

• Transactional memories covers concurrency in resource access

✴ Intel IvyBridge and PPC BlueGene (and Intel ring0)
✦ Wait-on-reservation

• Blocks context on Instruction Decode

• Can be used to overcome energy problem for active waiting on lock-free

40
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Applications
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2012: Cholesky fact vs PLASMA libraries
IEEE PDP 2012
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C4.5 (Fine grain - irregular D&C)
PKDD 2011 
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Smith Waterman vs TBB vs OpenMP vs Cilk
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Smith Waterman vs TBB vs OpenMP vs Cilk
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Two-phase denoising
IEEE IPTA 2012

45

 Adaptive
median filter
different pixels are 

independent and can 
be easily processed  

in parallel
pixels are read-only

 Iterative 
variational method
answer to the question: 

which is the greyscale level 
that better “integrate” in 

the surrounding 
(i.e. keeps edges)

at each iteration an 
approximation of restored 

pixels is available

map p in pixels
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if isImpluse(p) return NOISY;
  return NOT_NOISY;

while !fixpoint
  map u in N (noisy pixels) 
    new_u = value_that_minimize F(u);
  reduce(u in N,new_u in NEW_N, diff); 

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the
regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see
[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:
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where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest
neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following
� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise
removal and edge preservation provided by the function �.
The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional
(1) and it is following reviewed:
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The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional
shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

I I I . SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core
Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with
Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):
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 Adaptive
median filter
different pixels are 

independent and can 
be easily processed  

in parallel
pixels are read-only

 Iterative 
variational method
answer to the question: 

which is the greyscale level 
that better “integrate” in 

the surrounding 
(i.e. keeps edges)

at each iteration an 
approximation of restored 

pixels is available

map p in pixels
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if isImpluse(p) return NOISY;
  return NOT_NOISY;

while !fixpoint
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F1(a,...f)

F3(a,...f)

F4(a,...f)

ii)

iii)

i)

1's runs 2's runs 4's 3's

Parallel stochastic sim for system biology 
IEEE PDP 2011, HiBB 2011, Briefings in Bioinformatics (invited), Bio-IT 
world (invited), IEEE PDP 2013 (submitted), BMC Bioinformatics 
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IMPACT
Innovative Methods for Particle Colliders at the Terascale

(2012-2015, oversimplified vision)

1 postdoc position open
2 years, about 1800 Euro/mount after taxes

huge data Diff
(somehow)

Monte Carlo simulation
of “known” processes

Filtered data
to be analysed

(much smaller)

huge data

Particle physicists Theoretic physicists

new knowledge

Monte Carlo simulations
smaller but frequent 

requires great “reactivity”
of the workflow to tune models

new speculations

IMPACT project 
contributed to results on 

preliminary results on
channel H→ZZ→4l

shown at Higg’s boson 
claim Jul 2012



Conclusions
✴ FastFlow C++ pattern-based framework

✦ A tiny & open research framework (5K lines codebase)

✦ 3 years old - over 8K downloads - 40K web contacts 

✦ x86/PPC/ARM + Linux/Mac/Win/iOS

• Adopted as one run-time technology in ParaPhrase EU-FP7 STREP

• a laboratory to experiment new run-time solutions

• GPGPU integration (working on), Infiniband RDMA integration (working on),
HW blocking reads (thinking on), HW transactional mem (thinking on) ...

• Stream-specific parallel memory allocator: fast (but still under test)

✦ Data-centric, focus on messaging and synchronization, thread model agnostic

✦ High-level = performance & portability

• Speedup starting from ~20 clock cycles workload on standard x86_64 (TBB >20K)

• Tested on dozen of apps, comparable or faster than TBB/OpenMP

• http://di.unito.it/fastflow  
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✴ Paraphrase
✦ Parallel Patterns for Adaptive Heterogeneous Multicore Systems 

✦ EU-FP7 STREP, 2011-2014, FastFlow is the background technology

✴ IMPACT
✦ Innovative Methods for Particle Colliders at the Terascale 

✦ National, 2012-2015, FastFlow is the background technology

✴ HiPEAC
✦ High Performance and Embedded Architecture and Compilation

✦ EU NOE, 2012-2016

✴ BETTY
✦ Behavioral Types for Reliable Large-Scale Software Systems 

✦ EU Cost Action, 2012-2016

✴ CINA
✦ CINA: Compositionality, Interaction, Negotiation,  Autonomicity for the future ICT society

✦ MIUR PRIN, 2012-2014
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