
FastFlow: high-level programming patterns
with non-blocking lock-free run-time support

Marco Aldinucci - Uni. of Torino, Italy
Coordinator of the research activities on "Parallel and High-Performance Computing"
FabioTordini (PhD), Claudia Misale (PhD), Irfan Uddin (PostDoc), Guilherme Peretti
Pezzi (PostDoc), Maurizio Drocco (SW engineer)

&

Massimo Torquati and Marco Danelutto - Uni. Pisa, Italy
Massimiliano Meneghin - IBM Research, Ireland
Peter Kilpatrick - Queen’s Uni. Belfast, U.K.

Politecnico di Milano
Dipartimento di Elettronica e Informazione

December 5, 2012
Milano, Italy

http://www.it.uu.se/research/upmarc/events/120928/MAabs
http://www.it.uu.se/research/upmarc/events/120928/MAabs
http://www.it.uu.se/research/upmarc/events/120928/MAabs
http://www.it.uu.se/research/upmarc/events/120928/MAabs

Outline

✴ Concurrency and multi-core, the theoretical
background
✦ a personal perspective

✴ FastFlow
✦ A programming model (and a library) for multicore (& manycore)

✦ Fast core-to-core lock-free messaging

✴ Applications

✴ Discussion

2


`````````````

Our tool perspective

Shared
memory

Macro 
Data Flow

Beowulf

Grid

MPP

Autonomic

3

P3L
1991

SKiE
1997

OCamlP3L
1998

SKElib
2000

Lithium
2002

Muskel
2006

FastFlow
2009

Eskimo
2003

ASSIST
2001

ASSISTant
2008

GCM
2008

G
PG

PU
s



Concurrency and multi-core
theoretical background: a personal 

perspective

4



sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f 

tra
je

ct
or

ie
s

ge
ne

ra
tio

n 
of

 
si

m
ul

at
io

n 
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations 

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n 
of

 
sl

id
in

g 
w

in
do

w
s 

of
 tr

aj
ec

to
rie

sraw 
simulation

results display of
results

---
Graphical

User
Interface

meanvariance k-means

filtered 
simulation

results

stat
eng

analysis pipeline
main pipeline

Parallel stochastic sim for system biology 
IEEE PDP 2011, HiBB 2011, Briefings in Bioinformatics (invited), Bio-IT 
world (invited), IEEE PDP 2013 (submitted), BMC Bioinformatics 

5

task size
DSL task engine



Simulation of transcriptional regulation in Neurospora

Parallel stochastic sim for system biology 
IEEE PDP 2011, HiBB 2011, Briefings in Bioinformatics (invited), Bio-IT 
world (invited), IEEE PDP 2013 (submitted), BMC Bioinformatics 

6M. Aldinucci et al. On designing multicore-aware simulators for biological systems. PDP 2011. 2011. IEEE.

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

sp
ee

du
p

n. simulation engines (sim eng)

ideal
240 trajectories
480 trajectories

1200 trajectories



Nowadays

✴E.g. Intel Ivybridge, Haswell
✴ cache-coherent 
✴ 12 or more core per socket (20 contexts)
✴ cc-NUMA (as matter of a fact)

✴NVidia/AMD GPGPU/Hybrid
✴ SIMD, no global synch
✴ performance only with proper and not fully 

automatic memory hierarchy management 

✴ Intel MIC CPU/GPGPU
✴ ring-based interconnection, variable coherency
✴ apparently even more NUMA

✴ IBM powerEN
✴ general purpose cores
✴ specialised cores, soft cores?

7

Quickpath



From programming/tuning viewpoint ...
the simplest is already too complex ...

✴ Exploit cache coherence
✦ Memory fences are expensive, increasing core count will make it 

worse

✴ Fine-grained parallelism is hard to achieve
✦ I/O bound problems, High-throughput, Streaming, Irregular DP 

problems

✦ Automatic and assisted parallelisation solves uniform&easy cases

✴ SIMD/GPGPU worsen the scenario 
✦ Atomic ops in memory (i.e. fences) are still needed 

✦ Not everything can be described with do independent (a.k.a. map)

8



Micro-benchmarks: farm of tasks

void Emitter () { 
for ( i =0; i <streamLen;++i){ 
task = create_task (); 
queue=SELECT_WORKER_QUEUE(); 
queue −>PUSH(task); 

} 
} 

void Worker() { 
while (!end_of_stream){ 
myqueue −>POP(&task); 
do_work(task) ; 
} 

} 

int main () { 
spawn_thread( Emitter ) ; 
for ( i =0; i <nworkers;++i){ 
spawn_thread(Worker); 

} 
wait_end () ; 

} 

E C

W
1

W
2

W
n

Used to implement: parameter sweeping, master-worker, etc.

9



Task farm with POSIX lock/unlock 

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μS
E C

W
1

W
2

W
n

average execution time per task

10



Can we avoid locks?

✴  Under relaxed memory models, using CAS/RW-ops
✦ nonblocking algorithms

✦ they perform better than lock-based

✦ they fence the memory and pay cache coherency reconciliation 
overhead

✦ in GPUs ...

• CAS/atomic ... you have to go to the global memory

11



Lock vs Nonblocking CAS (fine grain 0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS

12

E C

W
1

W
2

W
n



Re-starting from the basics

✴ Reducing the problem to the bare bones
✦ Producer-Consumer model (streaming)

✦ Directly control thread blocking using non-blocking 
synchronisations

✦ Directly design the “data channel” 

• Having clear how data move in the whole memory hierarchy

✴ Restarting from the FIFO queue P C

13



Producer-Consumer
✴ Producer-Consumer queues

✦ fundamental data structures in concurrent systems

• data/message channels synchronization, task scheduling, ...

• work-stealing mechanisms (e.g. for OpenMP runtime)

✴ Producer-Consumer vs Mutual Exclusion 
✦ Mutex is inherently more complex (requires deadlock-freedom) 

• require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

• Dekker and Bakery algorithms requires Sequential Consistency 

• Producer Consumer is a cooperative (non cyclic) process

✴ Producer-Consumer vs Transactional Memories (?)
✦ To be tested extensively, interesting to understand what happens when data is  

moved to another core (get an invalidation?)

✦ Transactions happens at cache line level (IBM/BlueGene) or blocking decode unit 
(IBM/PPC x86_64/ring0 wait on reservation)

14



Concurrent queues

✴ Concurrency level 
✦ SPSC, SPMC, MCSP, MPMC

✴ Internal data structures
✦ Array-based, List-based

✴ Size 
✦ Bounded, Unbounded

✴ Progress guarantees
✦ No guarantee (blocking), Obstruction freedom, Lock freedom, 

Wait freedom

15



Blocking vs non-blocking

✴ What are the performance implications of the 
progress properties ?

✴ For medium/coarse grain applications:
✦ Blocking faster than Non-Blocking 

✴ For fine grain applications:
✦ Non-Blocking faster than Blocking

✦ Obstruction-Free faster than Lock-Free faster than Wait-Free

✴ In the general case:
✦ Stronger properties are harder to maintain

16

several task-
based

approaches are 
here

I’m focusing here



Related Work: Lock-free, CAS-free, wait-free

✴ Single-Producer-Single-Consumer FIFO queues 
✦ Lamport et al. 1983 Trans. PLS (Sequential consistency only - in memory)

✦ Higham and Kavalsh. 1997 ISPAN (P1C1 - TSO + proof -  in memory)

✦ Giacomoni et al. 2008 PPoPP (TSO + cache slipping - in memory)

✦ BatchQueue & MCRingBuffer (TSO, double/multiple-buffering - in memory)

✴ Multiple-Producers-Multiple-Consumers FIFO queues
✦ Blocking 2-locks  - Michael and Scott

✦ Nonblocking with CAS  - list-based - Michael and Scott (PODC96)

• Requires deferred reclamation/hazard pointers to avoid ABA problem

✦ Nonblocking with CAS  - array-based - Tsigas and Zhang (PAA01)

✦ Nonblocking without CAS - in memory ➠ Cannot be done

✦ Nonblocking without CAS - with mediator thread ➠ FastFlow

17



Recap: coherence and consistency

✴ Memory/Cache Coherence
✦ Deal with multiple replicas of the same location in different caches

✴ Memory Consistency
✦ Deal with the ordering in which writes

and reads at different locations 
take effect in memory (issued by either 
the same or different processors/cores)

18

write(A,3)

write(A,1)
Thread 1

Thread 2
read(A,?)



Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997) 

 & FastForward (Giacomoni et al, PPoPP 2008)

19

(WMB)
For any 
model 
weaker 

than TSO



Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997) 

 & FastForward (Giacomoni et al, PPoPP 2008)

head and tail are 
mutually invalidated by 

producer and consumer
1 cache miss every push 

and pop (at least)

19

excluding “true” deps

extended domain
on void *

(WMB)
For any 
model 
weaker 

than TSO
producer read/write head
consumer read/write tail

no misses



Lock vs CAS vs SPSC FastFlow (50 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

20



Lock vs CAS vs SPSC FastFlow (5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

21



Lock vs CAS vs SPSC FastFlow (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

22



Medium grain (5 μS workload)

E C

W
1

W
2

W
n

23



Layer 1: Simple streaming networks

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge 
18MB L3 shared cache, 256K L2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on different cores same CPU

1.50 1.37 0.83

1.33
0.75 0.82 0.50 0.46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e
c
o

n
d

s

buffer size

P and C on different CPUs

3.33
3.15

2.23

2.91

3.56

4.08

2.43

2.76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on same core distinct contexts

0.19 0.14 0.12 0.11 0.09 0.11 0.11 0.11

different sockets

same socket same core different contexts same socket different cores different

24



Layer 1: Simple streaming networks

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge 
18MB L3 shared cache, 256K L2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on different cores same CPU

1.50 1.37 0.83

1.33
0.75 0.82 0.50 0.46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e
c
o

n
d

s

buffer size

P and C on different CPUs

3.33
3.15

2.23

2.91

3.56

4.08

2.43

2.76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on same core distinct contexts

0.19 0.14 0.12 0.11 0.09 0.11 0.11 0.11

different sockets

MPI shmem impl
is ~190 ns at best

(D.K. Panda)

same socket same core different contexts same socket different cores different

24



Layer 1: Simple streaming networks

DR
AF
T

1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati.  An Efficient Synchronisation 
Mechanism for Multi-Core Systems. 

EuroPar 2012.
Wed 29 Aug - B3 multicore 14.30-16.00 

tail head

dynamic
linked list
of circular

buffers

P C

25



Layer 1: Simple streaming networks 
http://www.1024cores.net/home/technologies/fastflow

S2

S3 S4

S1 Sn

...

26

50K

100K

150K

200K

1 8 16 24 32 40 48 56 64

T
h
ro

u
g
h

p
u
t 
(m

sg
/s

)

n. threads

uSPSC
dSPSC

dSPSC no cache

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge 
18MB L3 shared cache, 256K L2

Linked list w/ dyn alloc
Michael-Scott queue

well-known ~ 400 citations  0

 50

 100

 150

 200

 250

 300

 350

 400

 450

64 1024 8192

n
a
n
o
se

co
n
d
s

buffer size

mapping 1
mapping 2
mapping 3

Linked list with pooling
Opt Michael-Scott queue

(our result)

20x faster

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a
n
o
se

co
n
d

s

buffer size

mapping 1
mapping 2
mapping 3

Linked list + circular buffer
FastFlow queue

(our result)

12x faster

same core
same socket
different sockets

Speedup

<35 ns irrespectively
of the mapping

http://www.1024cores.org
http://www.1024cores.org


new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Unbound queues are useful

27

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32

Ti
m

e 
(s

)

N. of (dealloc) threads

10M alloc/dealloc (32B) - 1µs tasks - 32-core Intel E7 2Ghz

Hoard-3.9
libc-6
TBB-4.0
FastFlow
Ideal



new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Unbound queues are useful

OS
allocator

27

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32

Ti
m

e 
(s

)

N. of (dealloc) threads

10M alloc/dealloc (32B) - 1µs tasks - 32-core Intel E7 2Ghz

Hoard-3.9
libc-6
TBB-4.0
FastFlow
Ideal



new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Unbound queues are useful

✴ Faster than posix, often faster than hoard 
and TBB

✦ unpublished, but available on sourceforge

✦ needs lot of comparative testing to be published

✴ Implements deferred deallocation to avoid 
ABA problem

FF  allocator

27

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32

Ti
m

e 
(s

)

N. of (dealloc) threads

10M alloc/dealloc (32B) - 1µs tasks - 32-core Intel E7 2Ghz

Hoard-3.9
libc-6
TBB-4.0
FastFlow
Ideal



new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

Unbound queues are useful

✴ Faster than posix, often faster than hoard 
and TBB

✦ unpublished, but available on sourceforge

✦ needs lot of comparative testing to be published

✴ Implements deferred deallocation to avoid 
ABA problem

FF  allocator

The graph is now cyclic
and needs unbound 

queues to avoid 
deadlocks

27

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32

Ti
m

e 
(s

)

N. of (dealloc) threads

10M alloc/dealloc (32B) - 1µs tasks - 32-core Intel E7 2Ghz

Hoard-3.9
libc-6
TBB-4.0
FastFlow
Ideal



FastFlow

28



Lock-free and CAS-free?

✴ Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done
✦ Producer-Consumer is inherently weaker with respect to Mutex 

✦ It does require the cooperation of partners whereas Mutex does not

✴ Expressive enough to build a streaming (or dataflow) 
programming framework
✦ MPMC = SPSC + mediator threads

✴ But what about productivity at large scale?
✦ Write a program is defining a graph encoding true dependencies ... not 

really easy

29



FastFlow is based on producer-consumer

✦ Lock-free/fence-free non-blocking synchronisations

✦ C++ STL-like implementation

✦ thread-model agnostic (pthreads, QT, windows threads, ...)

✦ compliant with other synchronisation mechanisms in the business code (e.g. locks and 
semaphores)

30

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model 

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues 

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons 

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

F
a
st
F
lo
w

Problem Solving
Environment

High-level
programming

Low-level
programming

Run-time
support

Hardware

Applications

E C

P C

Producer Consumerlock-free SPSC queue

SPMC MPSC

Wn

W1

Farm

input
stream

output
stream

E C

Wn

W1

D&C

uses
E

E

SPMC

C

MPSC



Pattern-based approach: rationale

✴ Abstract parallelism exploitation pattern by parametric code
✦ E.g. higher order function, code factories, C++ templates, ...

✦ Can composed and nested as programming language constructs + offloading

✦ Stream and Data Parallel

✴ Platform independent
✦ Implementations on different multi/many-cores

✦ Support for hybrid architectures thanks to pattern compositionality

✴ Provide state-of-the-art, parametric implementation of each 
parallelism exploitation pattern
✦ With natural way of extending patterns, i.e. OO

✦ Functional (seq code) and tunable extra-functional (QoS) parameters

31



✴ farm
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA streams - automatic exploitation of asynch comm 

✴ pipeline
✦ on CPU - pipeline

✦ on GPU - sequence of kernel calls or global mem synch

✴ map
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT - parallelism exploitation

✴ reduce
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

✴ D&C
✦ on CPU - master-worker with feedback - // exploitation

✦ on GPU - working on it, maybe loop+farm

Patterns, their implementation, and their 
purpose

32

stream[k]

copy_D2H

kernel

copy_H2D

stream[0]

farm_start

stream[1] stream[n]

farm_start



Composition

✴ Composition via C++ template meta-programming

✦ CPU: Graph composition

✦ GPU: CUDA streams

✦ CPU+GPU: offloading

✴ farm{ pipe }

✴ pipe(farm, farm)

✴ pipe(map, reduce)

✴ ....

33

copy_D2H

kernel

copy_H2D

farm_start

copy_D2H

kernel

copy_H2D

copy_D2H

kernel

copy_H2D

farm_start



#include <vector>
#include <iostream>
#include <ff/farm.hpp>

using namespace ff;

// generic worker
class Worker: public ff_node {
public:
    void * svc(void * task) {
        int * t = (int *)task;
        std::cout << "Worker " << ff_node::get_my_id() 
                  << " received task " << *t << "\n";
        return task;
    }
    // I don't need the following functions for this test
    //int   svc_init() { return 0; }
    //void  svc_end() {}

};

// the gatherer filter
class Collector: public ff_node {
public:
    void * svc(void * task) {
        int * t = (int *)task;
        if (*t == -1) return NULL;
        return task;
    }
};

// the load-balancer filter
class Emitter: public ff_node {
public:
    Emitter(int max_task):ntask(max_task) {};

    void * svc(void *) {    
        int * task = new int(ntask);
        --ntask;
        if (ntask<0) return NULL;
        return task;
    }
private:
    int ntask;
};

int main(int argc, char * argv[]) {

    if (argc<3) {
        std::cerr << "use: " 
                  << argv[0] 
                  << " nworkers streamlen\n";
        return -1;
    }
    
    int nworkers=atoi(argv[1]);
    int streamlen=atoi(argv[2]);

    if (!nworkers || !streamlen) {
        std::cerr << "Wrong parameters values\n";
        return -1;
    }
    
    ff_farm<> farm; // farm object
    
    Emitter E(streamlen);
    farm.add_emitter(&E);

    std::vector<ff_node *> w;
    for(int i=0;i<nworkers;++i) w.push_back(new Worker);
    farm.add_workers(w); // add all workers to the farm

    Collector C;
    farm.add_collector(&C);
    
    if (farm.run_and_wait_end()<0) {
        error("running farm\n");
        return -1;
    }
    std::cerr << "DONE, time= " << farm.ffTime() << " (ms)\n";
    farm.ffStats(std::cerr);

    return 0;
}

E C

W
1

W
2

W
n 34



+ distributed

✴ Generic ff_node is 
subclassed to ff_dnode

✴ ff_dnode can support network channels
✦ P2P or collective

✦ used as frontier node of streaming graph

✦ can be used to merge graphs across distributed platforms

✴ No changes to programming model
✦ at least require to “add” stub ff_dnode
✦ when passing pointers data is serialised

• serialisation hand-managed (zero-copy, think to Java!)

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati, P. Kilpatrick.  Targeting distributed systems in FastFlow. CGW-Europar 2012

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA  & cc-NUMA 

Applications on multicore, many core & distributed platforms of multicores
Efficient and portable - designed with high-level patterns

Distributed platforms
Clouds, clusters of SMPs

Simple streaming networks
Zero copy networking + processes model

Arbitrary streaming networks
Collective communications  + FF Dnodes

35



+ OpenCL (working on)

36



FastFlow: data-flow, not task-based

✦ FastFlow is NOT a task based framework, focus specifically on 
data movements and synchronizations (shmem/distr/GPU) 

✦ it does not expose the task concept, it rather abstracts:

• networks of nodes (threads/processes) that can synchronize efficiently (via message 
passing) and move data (via shared memory or message passing)

• predefined, OO extendable, composable patterns (i.e. networks of nodes)

✦ orthogonal way of thinking w.r.t. tasks

• nodes are pinned to core, no over-provisioning, ...

✦ it can middleware to build your own task based framework

• inherit lock-free synchronization mechanisms (that aren’t friendly guys) 

• just create an object, and pass the pointer

• predefined facilities to manage load-balancing, data-placement, OO-extendable

37



Summary

✴ Patterns at the high-level
✦ Currently as C++ templates

✦ Set of patterns can be extended, semantics of patterns can be 
changed, complexity gracefully increase with semantic distance

✴ Used to generate cyclic streaming networks (of 
threads, ...)
✦ Graphs, describing true data dependencies. Can be composed and 

transformed as graphs

✦ Cyclic graphs need unbound queue

✦ Heterogeneous cores, thread affinity, memory affinity, NUMA, can 
be managed while mapping graph onto the metal

38



Thoughts: on programming models ...

✴ “Coarse grain concurrency is nearly exhausted”

✴ “It is not about Flops, it is about data movement”

✴ “Programming systems should be designed to 
support fast data movement and enforce locality”

✴ “Variable coherency & inter-socket messaging”

✴ “Novel computing models are needed”
✦ “A computer language is not a computing model.  A library is not a 

computing model.”

✦ “System programmers should use the techniques they advocate”

39



Thoughts: on programming models ...

✴ Hardware Transactional Memory
✦ Intel Haswell Transactional Synchronization Extensions (TSX)

✦ Pragmatically orthogonal and complementary to data-flow

• Data-flow covers (true) data-dependencies, i.e. data passing

• Transactional memories covers concurrency in resource access

✴ Intel IvyBridge and PPC BlueGene (and Intel ring0)
✦ Wait-on-reservation

• Blocks context on Instruction Decode

• Can be used to overcome energy problem for active waiting on lock-free

40

http://it.wikipedia.org/w/index.php?title=Transactional_Synchronization_Extensions&action=edit&redlink=1
http://it.wikipedia.org/w/index.php?title=Transactional_Synchronization_Extensions&action=edit&redlink=1


Applications

41



2012: Cholesky fact vs PLASMA libraries
IEEE PDP 2012

42



C4.5 (Fine grain - irregular D&C)
PKDD 2011 

43



Smith Waterman vs TBB vs OpenMP vs Cilk

44



Smith Waterman vs TBB vs OpenMP vs Cilk

44



Two-phase denoising
IEEE IPTA 2012

45

 Adaptive
median filter
different pixels are 

independent and can 
be easily processed  

in parallel
pixels are read-only

 Iterative 
variational method
answer to the question: 

which is the greyscale level 
that better “integrate” in 

the surrounding 
(i.e. keeps edges)

at each iteration an 
approximation of restored 

pixels is available

map p in pixels
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if isImpluse(p) return NOISY;
  return NOT_NOISY;

while !fixpoint
  map u in N (noisy pixels) 
    new_u = value_that_minimize F(u);
  reduce(u in N,new_u in NEW_N, diff); 

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the
regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see
[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F
d

|
N

(u) =
X

(i,j)2N

[|u
i,j

� d
i,j

| + β
2
(S1 + S2)] (2)

where

S1 =
X

(m,n)2Vi,j\N

2 · �(u
i,j

� d
m,n

) (3)

S2 =
X

(m,n)2Vi,j\N

c

�(u
i,j

� u
m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest
neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following
� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise
removal and edge preservation provided by the function �.
The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional
(1) and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (i j ) 2 A;
– At each iteration k, calculate, for each (i j ) 2 A,

ξ(k)
i,j

= β
X

(m,n)2Vi,j

�̇ (y
i,j

� z
i,j

� y
m,n

)

where z
m,n

, for (m, n) 2 V i , j , are the latest updates and �̇ is the derivative of �.
– If ξ(k)

i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

β
X

(m,n)2Vi,j

�̇
⇣
z(k)
i,j

+ y
i,j

� z
m,n

� y
m,n

⌘
= sign

⇣
ξ(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional
shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

I I I . SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core
Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with
Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F
d

|
N

(u) =
X

(i,j)2N

[|u
i,j

� d
i,j

| + β
2
(S1 + S2)] (2)

where

S1 =
X

(m,n)2Vi,j\N

2 · �(u
i,j

� d
m,n

) (3)

S2 =
X

(m,n)2Vi,j\N

c

�(u
i,j

� u
m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest

neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following

� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function �.

The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional

(1) and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (i j ) 2 A;

– At each iteration k, calculate, for each (i j ) 2 A ,

ξ(k)
i,j

= β
X

(m,n)2Vi,j

�̇ (y
i,j

� z
i,j

� y
m,n

)

where z
m,n

, for (m, n) 2 V i , j , are the latest updates and �̇ is the derivative of �.

– If ξ(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

β
X

(m,n)2Vi,j

�̇
⇣
z(k)
i,j

+ y
i,j

� z
m,n

� y
m,n

⌘
= sign

⇣
ξ(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the
regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see
[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F
d

|
N

(u) =
X

(i,j)2N

[|u
i,j

� d
i,j

|+ β
2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · �(u
i,j

� d
m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

�(u
i,j

� u
m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest
neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following
� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise
removal and edge preservation provided by the function �.
The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional
(1) and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (i j ) 2 A;
– At each iteration k, calculate, for each (i j ) 2 A,

ξ(k)
i,j

= β
X

(m,n)2Vi,j

�̇ (y
i,j

� z
i,j

� y
m,n

)

where z
m,n

, for (m, n) 2 V i , j , are the latest updates and �̇ is the derivative of �.
– If ξ(k)

i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

β
X

(m,n)2Vi,j

�̇
⇣
z(k)
i,j

+ y
i,j

� z
m,n

� y
m,n

⌘
= sign

⇣
ξ(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional
shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

I I I . SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core
Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with
Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT



Two-phase denoising
IEEE IPTA 2012

45

 Adaptive
median filter
different pixels are 

independent and can 
be easily processed  

in parallel
pixels are read-only

 Iterative 
variational method
answer to the question: 

which is the greyscale level 
that better “integrate” in 

the surrounding 
(i.e. keeps edges)

at each iteration an 
approximation of restored 

pixels is available

map p in pixels
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if isImpluse(p) return NOISY;
  return NOT_NOISY;

while !fixpoint
  map u in N (noisy pixels) 
    new_u = value_that_minimize F(u);
  reduce(u in N,new_u in NEW_N, diff); 

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the
regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see
[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F
d

|
N

(u) =
X

(i,j)2N

[|u
i,j

� d
i,j

| + β
2
(S1 + S2)] (2)

where

S1 =
X

(m,n)2Vi,j\N

2 · �(u
i,j

� d
m,n

) (3)

S2 =
X

(m,n)2Vi,j\N

c

�(u
i,j

� u
m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest
neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following
� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise
removal and edge preservation provided by the function �.
The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional
(1) and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (i j ) 2 A;
– At each iteration k, calculate, for each (i j ) 2 A,

ξ(k)
i,j

= β
X

(m,n)2Vi,j

�̇ (y
i,j

� z
i,j

� y
m,n

)

where z
m,n

, for (m, n) 2 V i , j , are the latest updates and �̇ is the derivative of �.
– If ξ(k)

i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

β
X

(m,n)2Vi,j

�̇
⇣
z(k)
i,j

+ y
i,j

� z
m,n

� y
m,n

⌘
= sign

⇣
ξ(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional
shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

I I I . SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core
Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with
Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F
d

|
N

(u) =
X

(i,j)2N

[|u
i,j

� d
i,j

| + β
2
(S1 + S2)] (2)

where

S1 =
X

(m,n)2Vi,j\N

2 · �(u
i,j

� d
m,n

) (3)

S2 =
X

(m,n)2Vi,j\N

c

�(u
i,j

� u
m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest

neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following

� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function �.

The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional

(1) and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (i j ) 2 A;

– At each iteration k, calculate, for each (i j ) 2 A ,

ξ(k)
i,j

= β
X

(m,n)2Vi,j

�̇ (y
i,j

� z
i,j

� y
m,n

)

where z
m,n

, for (m, n) 2 V i , j , are the latest updates and �̇ is the derivative of �.

– If ξ(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

β
X

(m,n)2Vi,j

�̇
⇣
z(k)
i,j

+ y
i,j

� z
m,n

� y
m,n

⌘
= sign

⇣
ξ(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

1

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). β and α are the
regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see
[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F
d

|
N

(u) =
X

(i,j)2N

[|u
i,j

� d
i,j

|+ β
2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · �(u
i,j

� d
m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

�(u
i,j

� u
m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V
i,j

is the set of the four closest
neighbors of the pixel with coordinates (i , j ) and d is the corrupted image. As in [15], we have used the following
� function that provides the best trade-off between edge preserving and denoising:

�(t) = |t|↵ with 1 < α  2 (5)

The values of α and β were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise
removal and edge preservation provided by the function �.
The minimization problem is then solved by an algorithm that works on the residuals z = u � y of the functional
(1) and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (i j ) 2 A;
– At each iteration k, calculate, for each (i j ) 2 A,

ξ(k)
i,j

= β
X

(m,n)2Vi,j

�̇ (y
i,j

� z
i,j

� y
m,n

)

where z
m,n

, for (m, n) 2 V i , j , are the latest updates and �̇ is the derivative of �.
– If ξ(k)

i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

β
X

(m,n)2Vi,j

�̇
⇣
z(k)
i,j

+ y
i,j

� z
m,n

� y
m,n

⌘
= sign

⇣
ξ(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional
shown in (2). The convergence criterion is |z(k) � z(k�1)| < 1.

I I I . SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core
Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with
Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT



Two-phase denoising
IEEE IPTA 2012 (Istanbul, 15-18 Oct)

46

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal
Baboon standard

test image
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB  MAE 2.67



sim
eng

ga
th

er

sim
eng

di
sp

ta
ch

incomplete simulation tasks (with load balancing)

farm

al
ig

nm
en

t o
f 

tra
je

ct
or

ie
s

ge
ne

ra
tio

n 
of

 
si

m
ul

at
io

n 
ta

sk
s

simulation pipeline

start new simulations, steer and terminate running simulations 

stat
eng

ga
th

er

di
sp

ta
ch

farm

ge
ne

ra
tio

n 
of

 
sl

id
in

g 
w

in
do

w
s 

of
 tr

aj
ec

to
rie

sraw 
simulation

results display of
results

---
Graphical

User
Interface

meanvariance k-means

filtered 
simulation

results

stat
eng

analysis pipeline
main pipeline

reducereduce reducereduce

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4 d1 d2 d3 d4

e1 e2 e3 e4 f1 f2 f3 f4

{a,b}@P1

{c,d}@P2

{e,f}@P3

a1 b1

c1

e1

d1

f1

b2

c2

e2 f2

b3

a2

d2

e3 f3

c3

b4

d3

a3 e4

f4c4 d4

a4

{a,b}@P1

{c,d}@P2

{e,f}@P3

idle

F(a,...,f)

F(a,...,f)

idle

a1 b1

c1

e1

d1

f1

b2

c2

e2 f2

b3

a2

d2

e3 f3

c3

b4

d3

a3 e4

f4c4 d4

a4

{a,b}@P1

{c,d}@P2

{e,f}@P3

F2(a,...f)

simulationwall-clock
time

trajectory reduction

gain
F1(a,...f)

F3(a,...f)

F4(a,...f)

ii)

iii)

i)

1's runs 2's runs 4's 3's

Parallel stochastic sim for system biology 
IEEE PDP 2011, HiBB 2011, Briefings in Bioinformatics (invited), Bio-IT 
world (invited), IEEE PDP 2013 (submitted), BMC Bioinformatics 

47

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

sp
ee

du
p

n. simulation engines (sim eng)

ideal
240 trajectories
480 trajectories

1200 trajectories



IMPACT
Innovative Methods for Particle Colliders at the Terascale

(2012-2015, oversimplified vision)

1 postdoc position open
2 years, about 1800 Euro/mount after taxes

huge data Diff
(somehow)

Monte Carlo simulation
of “known” processes

Filtered data
to be analysed

(much smaller)

huge data

Particle physicists Theoretic physicists

new knowledge

Monte Carlo simulations
smaller but frequent 

requires great “reactivity”
of the workflow to tune models

new speculations

IMPACT project 
contributed to results on 

preliminary results on
channel H→ZZ→4l

shown at Higg’s boson 
claim Jul 2012



Conclusions
✴ FastFlow C++ pattern-based framework

✦ A tiny & open research framework (5K lines codebase)

✦ 3 years old - over 8K downloads - 40K web contacts 

✦ x86/PPC/ARM + Linux/Mac/Win/iOS

• Adopted as one run-time technology in ParaPhrase EU-FP7 STREP

• a laboratory to experiment new run-time solutions

• GPGPU integration (working on), Infiniband RDMA integration (working on),
HW blocking reads (thinking on), HW transactional mem (thinking on) ...

• Stream-specific parallel memory allocator: fast (but still under test)

✦ Data-centric, focus on messaging and synchronization, thread model agnostic

✦ High-level = performance & portability

• Speedup starting from ~20 clock cycles workload on standard x86_64 (TBB >20K)

• Tested on dozen of apps, comparable or faster than TBB/OpenMP

• http://di.unito.it/fastflow  

49

http://di.unito.it/fastflow
http://di.unito.it/fastflow


✴ Paraphrase
✦ Parallel Patterns for Adaptive Heterogeneous Multicore Systems 

✦ EU-FP7 STREP, 2011-2014, FastFlow is the background technology

✴ IMPACT
✦ Innovative Methods for Particle Colliders at the Terascale 

✦ National, 2012-2015, FastFlow is the background technology

✴ HiPEAC
✦ High Performance and Embedded Architecture and Compilation

✦ EU NOE, 2012-2016

✴ BETTY
✦ Behavioral Types for Reliable Large-Scale Software Systems 

✦ EU Cost Action, 2012-2016

✴ CINA
✦ CINA: Compositionality, Interaction, Negotiation,  Autonomicity for the future ICT society

✦ MIUR PRIN, 2012-2014

50

Thank you


