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Outline
✴ ParaPhrase

✦ Parallel Patterns for Heterogeneous Multicore Systems 

• EC-STREP FP7

✴ Concurrency and multi-core, the theoretical background
✦ a personal perspective

✴ FastFlow
✦ A programming model (and a library)

✦ Fast (<10 nS) core-to-core lock-free messaging

✦ Supporting multi-core and accelerators

✴ Testbed: a novel two-phase image/video denoiser
✦ clean salt-and-pepper noise up to 90%

✦ reconstruction quality at 50% close to jpeg compression

✦ demo
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ParaPhrase

✴ ParaPhrase: Parallel Patterns for Heterogeneous 
Multicore Systems
✦ 3 Year targeted research project (FP7 STREP)

• Runs from 1/10/11 to 30/9/14

• Funded by objective 3.4, “Computing Systems”

• Project Number ICT-2011-288570

✦ 9 partners from five countries

✦ €3.5M budget, €2.6M EU contribution

✦ Coordinated by the U. of St Andrews, Scotland, UK
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Multi-cores: programming issues

✴ We can muddle through on 2-16 cores
✦ modified sequential code may work

✦ we may be able to use multiple programs to soak up cores

✦ BUT larger systems are much more challenging

✴ Fundamentally, programmers must learn to “think parallel”
✦ this requires new high-level programming constructs

✦ you cannot program effectively while worrying about deadlocks etc

• they must be eliminated from the design!

✦ you cannot program effectively while fiddling with communication etc

• this needs to be packaged/abstracted!
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The need of a programming model

✴ Applications programmers must be systems 
programmers
✦ insufficient assistance with abstraction, too much complexity to manage 

✴ Difficult/impossible to scale, unless the problem is simple

✴ Future multi/many-core
✦ Probably not just scaled versions of today’s multi/many-core

• Highly heterogeneous: message-passing, shared-memory cc-NUMA, variable cache 
consistency, specialized cores (XML, crypto, ...), soft-cores (FPGA), ...

✴ The approaches provide libraries
✦ they need to provide abstractions, i.e. programming models
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The Implications for Programming

✴ We must program heterogeneous systems in an 
integrated way

✴ It will be impossible to program each kind of core 
differently

✴ It will be impossible to take static decisions about 
placement etc.
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ParaPhrase Aims

Overall, we aim to produce a new pattern-based 
approach to programming parallel systems.

1. develop high-level design and implementation patterns that are 
capable of easily exposing useful parallelism on heterogeneous 
multicore/manycore systems.

2. develop new dynamic mechanisms to support adaptivity for  
heterogeneous multicore/manycore systems

3. verify that these patterns and adaptivity mechanisms can be used 
easily and effectively to develop a wide range of real-world 
applications 
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Concurrency and multi-core
theoretical background: a personal 

perspective
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Nowadays
✴ E.g. Intel Sandybridge, AMD Opteron

✴ cache-coherent 
✴ 10 core per socket (20 contexts)
✴ cc-NUMA (as matter of a fact)

✴ NVidia/AMD GPGPU/Hybrid
✴ SIMD, no global synch
✴ performance only with proper and not automatic 

memory hierarchy management 

✴ Intel MIC CPU/GPGPU
✴ ring-based interconnection, variable coherency
✴ apparently even more NUMA

✴ IBM powerEN
✴ general purpose cores
✴ specialised cores, soft cores?
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From programming/tuning viewpoint ...
the simplest is already too complex ...

✴ Exploit cache coherence

✴ Memory fences are expensive
✦ Increasing core count will make it worse

✴ Fine-grained parallelism is hard to achieve
✦ I/O bound problems, High-throughput, Streaming, Irregular DP problems

✦ Automatic and assisted parallelisation solves uniform&easy cases

• OpenMP, Par4all, ...

✴ From programming model viewpoint, SIMD/GPGPU (maybe) 
worsen the scenario 
✦ Well-understood programming model

✦ Atomic ops in memory (i.e. fences) are still needed 

✦ Not everything can be described with do independent (a.k.a. map)
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Micro-benchmarks: farm of tasks

void Emitter () { 
for ( i =0; i <streamLen;++i){ 
task = create_task (); 
queue=SELECT_WORKER_QUEUE(); 
queue −>PUSH(task); 

} 
} 

void Worker() { 
while (!end_of_stream){ 
myqueue −>POP(&task); 
do_work(task) ; 
} 

} 

int main () { 
spawn_thread( Emitter ) ; 
for ( i =0; i <nworkers;++i){ 
spawn_thread(Worker); 

} 
wait_end () ; 

} 
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W
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Used to implement: parameter sweeping, master-worker, etc.
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Task farm with POSIX lock/unlock 
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Can we avoid locks?

✴  Under relaxed memory models, using CAS/atomic 
ops
✦ “lock-free” data structures

✦ they perform better than lock-based

✦ they fence the memory and pay cache coherency reconciliation 
overhead

✦ in GPUs ...

• CAS/atomic ... you have to go to the global memory
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Lock vs CAS at fine grain (0.5 μS)
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Re-starting from the basics

✴ Reducing the problem to the bare bones
✦ Producer-Consumer model (streaming)

✦ Directly control thread blocking using non-blocking 
synchronisations

✦ Directly design the “data channel” 

• Having clear how data move in the whole memory hierarchy

✴ Restarting from the FIFO queue P C
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Interaction models: theoretical background 
(in a nutshell)

✴ low-level synchronisation in the shared memory 
model
✦ Mutual Exclusion (mutex)

• typically used as basic building block of synchronisations

✦ Producer Consumer

✴ they are not equally demanding
✦ Mutual Exclusion is inherently more complex since requires 

deadlock-freedom 

• require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

• Dekker and Bakery requires Sequential Consistency (++) 

✦ Producer Consumer is a cooperative (non cyclic) process

17



Recap: coherence and consistency

✴ Memory/Cache Coherence
✦ Deal with multiple replicas of the same location in different caches

✴ Memory Consistency
✦ Deal with the ordering in which writes

and reads at different locations 
take effect in memory (issued by either 
the same or different processors/cores)
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FastFlow SPSC queues

✴ Proved to be correct under SC 

✦ doesn’t work under weaker 
models

• TSO, e.g.  x86

• WO, e.g. PPC, ARM

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

19
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Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997) 
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Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
  if (NEXT(head) == tail) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {

  if (head == tail) {
    return EWOULDBLOCK;
  }
  data = buffer[tail];
  tail = NEXT(tail);
  return 0;
}

push_nonbocking(data) {
  if (NULL != buffer[head]) {
    return EWOULDBLOCK;
  }
  buffer[head] = data; 
  head = NEXT(head);
  return 0;
}

pop_nonblocking(data) {
  data = buffer[tail];
  if (NULL == data) {
    return EWOULDBLOCK;
  }
  buffer[tail] = NULL;
  tail = NEXT(tail);
  return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997) 

head and tail are 
mutually invalidated by 

producer and consumer
1 cache miss every push 

and pop (at least)
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Lock vs CAS vs SPSC FastFlow (50 μS)
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Lock vs CAS vs SPSC FastFlow (5 μS)
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Lock vs CAS vs SPSC FastFlow (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

23



Medium grain (5 μS workload)
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Fine grain (0.5 μS workload)
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Producer-Cons with FF queue: latency
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Wait-free fence-free unbound dynamic 
queue (uSPSC)
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1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, M. Torquati. An Efficient 
Synchronisation Mechanism for Multi-Core Systems. EuroPar 2012. Submitted.

tail head
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Bandwidth test (with uSPSC)
http://www.1024cores.net/home/technologies/fastflow
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Related Work: Lock-free, CAS-free, wait-free

✴ Single-Producer-Single-Consumer FIFO queues 
✦ Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)

✦ Higham and Kavalsh. 1997 ISPAN (P1C1 - TSO + proof -  passive)

✦ Giacomoni et al. 2008 PPoPP (TSO + cache slipping - passive)

✴ Multiple-Producers-Multiple-Consumers FIFO queues
✦ with CAS (two of them) - Michael and Scott (PODC96)

•  Also implemented in FastFlow, require deferred reclamation/hazard pointers to avoid ABA 
problem

✦ without CAS - passive ➠ Cannot be done

✦ without CAS - active ➠ FastFlow

✴ Extending the taxonomy with locking algorithms is clearly 
useless .... 
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Why elaborating on queues?

✴ Queues are the base of Producer-Consumer
✦ reference paradigm for data-centric and data-flow models

✦ orthogonal and complementary to Transactional Memories

• that address competition 

✦ can be used in both shared memory and message passing models

✴ Queues are the primary (maybe the only) global 
synchronisation mechanism in current GPGPUs
✦ take a look to NVidia/CUDA programming manual

✦ efficient global synch can pave the way to a broader usage of GPUs

• is it possible an atomic-free global memory queue on GPUs?
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FastFlow

31



Lock-free and CAS-free?

✴ Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done
✦ Producer-Consumer is inherently weaker with respect to Mutex 

✦ It does require the cooperation of partners whereas Mutex does not

✴ Expressive enough to build a streaming (or dataflow) 
programming framework
✦ MPMC = SPSC + mediator threads

✴ But what about productivity at large scale?
✦ Write a program is defining a graph encoding true dependencies ... not 

really easy
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FastFlow is based on producer-consumer

✦ Lock-free/fence-free non-blocking synchronisations

✦ C++ STL-like implementation

✦ thread-model agnostic (pthreads, QT, windows threads, ...)

✦ compliant with other synchronisation mechanisms in the business code (e.g. locks and 
semaphores)

33

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model 

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues 

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons 

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...
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Pattern-based approach: rationale

✴ Abstract parallelism exploitation pattern by parametric code
✦ E.g. higher order function, code factories, C++ templates, ...

✦ Can composed and nested as programming language constructs + offloading

✦ Stream and Data Parallel

✴ Platform independent
✦ Implementations on different multi/many-cores

✦ Support for hybrid architectures thanks to pattern compositionality

✴ Provide state-of-the-art, parametric implementation of each 
parallelism exploitation pattern
✦ With natural way of extending patterns, i.e. OO

✦ Functional (seq code) and tunable extra-functional (QoS) parameters
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✴ farm
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA streams - automatic exploitation of asynch comm 

✴ pipeline
✦ on CPU - pipeline

✦ on GPU - sequence of kernel calls or global mem synch

✴ map
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT - parallelism exploitation

✴ reduce
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

✴ D&C
✦ on CPU - master-worker with feedback - // exploitation

✦ on GPU - working on it, maybe loop+farm

Patterns, their implementation, and their 
purpose
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Composition

✴ Composition via C++ template meta-programming

✦ CPU: Graph composition

✦ GPU: CUDA streams

✦ CPU+GPU: offloading

✴ farm{ pipe }

✴ pipe(farm, farm)

✴ pipe(map, reduce)

✴ ....
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On my personal view of MPI ...

✴ I love it, I’ve using it for 15 years
✦ as a target language for building compilers for high-level parallel languages

✴ MPI collective operations are good

✴ they are an example of patterns (a.k.a. skeletons)
✦ even if not particularly high-level

✴ the problem are Send/Rcv 
✦ and the other over hundred (and counting) operations?

• are they perceived as really useful from anybody?

✦ they are on the language as well, and people use them

✴ one problem of  “cars” are drivers (and crashes)
✦ how much expertise do you need to write/tune/debug something barely decent?
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At the bottom line, it is just abstracting & 
engineering well-known concepts
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S05: High Performance Computing with CUDA

Data-parallel Algorithms &Data-parallel Algorithms &

Data StructuresData Structures

John Owens

UC Davis

7
S05: High Performance Computing with CUDA

Think In ParallelThink In Parallel

The GPU is a data-parallel processor

Thousands of parallel threads

Thousands of data elements to process

All data processed by the same program

SPMD computation model

Contrast with task parallelism and ILP

Best results when you “Think Data Parallel”

Design your algorithm for data-parallelism

Understand parallel algorithmic complexity and efficiency

Use data-parallel algorithmic primitives as building blocks

8
S05: High Performance Computing with CUDA

Data-Parallel AlgorithmsData-Parallel Algorithms

Efficient algorithms require efficient building blocks

This talk: data-parallel building blocks

Map

Gather & Scatter

Reduce

Scan

+ farm + pipeline + D&C

at least to manage 
automatically asynchronous
copies



Recap

✴ Patterns at the high-level
✦ Currently as C++ templates

✦ Set of patterns can be extended, semantics of patterns can be 
changed, complexity gracefully increase with semantic distance

✴ Used to generate cyclic streaming networks (of 
threads, ...)
✦ Graphs, describing true data dependencies. Can be composed and 

transformed as graphs

✦ Cyclic graphs need unbound queue

✦ Heterogeneous cores, thread affinity, memory affinity, NUMA, can 
be managed while mapping graph onto the metal
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Applications (see http://di.unito.it/fastflow ) 

✴ Smith-Waterman (based on SWPS3/SSE2, ParCo 10)
✦ Recently discovered it is used as baseline for FPGA design at it seems it is among the 

fastest SW solutions  

✴ C4.5 (EMCL-PKDD 10, Concurrency prat. exp. submitted)

✴ StochKit-ff (HiBB 11)

✴ MonteCarlo sims & Gillespie’s biological sims (PDP 11, HiBB 11)

✴ Cholesky (PDP 12)

✴ nProbe-ff (part of nTop software, ParCo 11)

✴ pbzip-ff (Wiley book 12)

✴ nqueens, k-means, fibonacci, Mandelbrot QT, and many micro-
benchmarks

✴ Two-phase edge-preserving denoiser (IEEE IPTA submitted)

40
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2012: Cholesky fact vs (very efficient) 
PLASMA libraries - IEEE PDP 2012
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C4.5 (Fine grain - irregular D&C)
PKDD 2011 
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Smith Waterman vs TBB vs OpenMP vs Cilk
Parallel Computing 2010 
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From users: Intel or AMD

✴ We always test on both platforms
✦ ....

✴ Assembler
✦ MONITOR/MWAIT instruction appear interesting for non-blocking 

synchronisations

• accessible only in Ring 0, why?

• IBM PowerEN ...

✴ Memory bandwidth is the key
✦ but memory affinity tools appear to be quite primitive in both platforms

• how data structures are related with access pattern?

• we are trying to address the problem with patterns ...
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A novel two-phase edge 
preserving parallel de-noising

45

Maurizio Drocco
University of Torino (MSc. student)

with the support of HPC AC university award



Two-phase denoising + Demo
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10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal
Baboon standard

test image
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB  MAE 2.67



Denoising explained

48

 Adaptive
median filter
different pixels are 

independent and can 
be easily processed  

in parallel
pixels are read-only

 Iterative 
variational method
answer to the question: 

which is the greyscale level 
that better “integrate” in 

the surrounding 
(i.e. keeps edges)

at each iteration an 
approximation of restored 

pixels is available

map p in pixels
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if isImpluse(p) return NOISY;
  return NOT_NOISY;

while !fixpoint
  map u in N (noisy pixels) 
    new_u = value_that_minimize F(u);
  reduce(u in N,new_u in NEW_N, diff); 

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the
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The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional
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Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):
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On the algorithm
✴ Adaptive median filters

✦ well-known

✦ smooth the image if used in rebuilding phase

✴ Variational methods
✦ edge-preserving, can be used for any kind of noise

✦ the formula is well-known, our algorithm is particularly fast

• because we found several loop invariants in the process

✦ if used alone can destroy “good” pixels

✦ not used up to now because too slow

• > 1 h on Matlab to rebuild a 256x256 image with 30% of noise

✴ Coupling them
✦ detect: increase the speed by reducing false positives 

✦ denoise: guarantee a good restoration because “touches” only noisy points
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Offloading on soft (i.e. not used cores) and 
HW accelerators

✴ offloading
✦ onto other cores and 

accelerators
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Speedup (multi-core)

52

 0

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30
sp

ee
du

p
n. workers

variant: spd-ff-border, size: 512x512, n. cycles: 60 

ideal
10 % noisy
50 % noisy
90 % noisy

 0

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

sp
ee

du
p

n. workers

variant: spd-ff, size: 4096x4096, n. cycles: 80

ideal
10 % noisy
50 % noisy
90 % noisy

4 sockets x 8 core x 2 contexts
Xeon E7-4820 @2.0GHz Sandy Bridge 

18MB L3 shared cache, 256K L2



Parallelism exploitation and patterns

✴ Application programmed high-level with FastFlow
✦ using Intel OpenCV 

• be careful, it is not fully thread-safe, all non thread-safe operation should be managed 
by a single thread (i.e. main)

✦ using offloading support, i.e. wrap a pattern-based code into a soft 
or HW “accelerator”

• nice technique to port existing legacy code with very low effort

• support for “semi-automatic” loop streamization

✴ Let us understand how through an example
✦ Two-phase denoising - video version
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Edge-preserving denoiser: video

#include <opencv/highgui.h>
#include <opencv/cv.h>

int main(int argc, char *argv[]) {
  CvCapture *capture;
  IplImage * frame,clean_frame;
  char key;
  vector<noisy_t> noisy;
  cvNamedWindow("Video", CV_WINDOW_AUTOSIZE);
  capture = cvCreateCameraCapture(CV_CAP_ANY);
  //capture = cvCreateFileCapture("/path/to/your/video/test.avi");
  while(true) {
    frame = cvQueryFrame(capture);        // get a frame from device
    noisy = myDetect(frame);              // detect noisy pixels
    clean_frame = myDenoise(frame,noisy); // denoise the frame
    cvShowImage( "Video", clean_frame);   // show the denoised frame
    key = cvWaitKey(100);
  }
  cvReleaseCapture(&capture);
  cvDestroyWindow("Video");
}
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Denoising explained
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 Adaptive
median filter
different pixels are 

independent and can 
be easily processed  

in parallel
pixels are read-only

 Iterative 
variational method
answer to the question: 

which is the greyscale level 
that better “integrate” in 

the surrounding 
(i.e. keeps edges)

at each iteration an 
approximation of restored 

pixels is available

map p in pixels
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if isImpluse(p) return NOISY;
  return NOT_NOISY;

while !fixpoint
  map u in N (noisy pixels) 
    new_u = value_that_minimize F(u);
  reduce(u in N,new_u in NEW_N, diff); 

detect

denoise
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The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):
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Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

 thr 1  

dispatching

myDetect

myDenoise

 thr n  

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames  main thr

Parallel -  Farm(Pipeline(myDetect,myDenoise))

acceleratorY

display

gathering

Changing the structure does not require re-writing business code (gray)
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FF multi-core vs FF hybrid

57

noise
FF 32 cores 

Intel 4x8x2 2GHz
FF 8 cores (detect) + 
Tesla C2050 (denoise)

Seq
Intel 4x8x2 2GHz

Lena 512x512Lena 512x512Lena 512x512Lena 512x512

10 1.8 s 1.9 s 32 s

50 6.5 s 2.3 s 162 s

90 10.9 s 2.8 s 290 s

Space 4096x4096Space 4096x4096Space 4096x4096Space 4096x4096

10 78 s 12 s 2093 s

50 373 s 46 s 10400 s

90 665 s 77 s 18571 s



Demo
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image: space, size: 2048x2048, noise: 90%

flat
border

std
cluster

Nondeterministic variants &
Convergence speed

✴ flat (used in CUDA version)
✴ use block halo, block size =1
✴ do independent
✴ deterministic  - slow convergence
✴ easy CPU and GPU - can be linearized

✴ border
✴ use block halo
✴ do independent on tiles, do across within tiles
✴ nondeterministic - fast convergence
✴ easy on CPU and GPU - cannot be linearized

✴ std (used in multicore version)
✴ don’t use a block halo
✴ do independent on tiles, do across within tiles
✴ nondeterministic - fast convergence
✴ easy CPU and GPU - cannot be linearized

✴ cluster
✴ do independent on tiles, do across within tiles
✴ deterministic - fast convergence
✴ easy on CPU, difficult on GPU - can be linearized
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Conclusions
✴ FastFlow C++ pattern-based framework

✦ A tiny, lightweight & open research framework 

• 2 years old - 6K downloads - 30K contacts - x86/PPC/ARM(?) + Linux/Mac/Win

• Adopted as one run-time technology in ParaPhrase

• Laboratory to experiment new run-time solutions

• GPGPU integration (working on), Infiniband RDMA integration (working on),
HW blocking reads (thinking on), HW transactional mem (thinking on) ...

• Stream-specific parallel memory allocator: faster than TBB (testing)

✦ A step forward in parallel programming models

• Data-centric, focus on messaging and synchronization, thread model agnostic

• support both message passing and shared memory

✦ High-level = performance & portability

• Speedup starting from ~20 clock cycles workload on standard x86_64 (TBB ~ 50K)

• FF/AVX Smith-Waterman among fastest existing SW solutions

• Tested on dozen of apps, comparable or faster than TBB/OpenMP

60



Conclusions

✴ GPGPUs
✦ Needs high-level, CUDA/OpenCL too close to the metal

✦ Well integrate with functional style and higher order partterns

✴ Two-phase denoising
✦ Novel, fast and efficient

• Works up to 95% or noise, comparable to jpeg on 50% of noise

✦ CPU/GPGPUs/Hybrid

✦ Edge-preserving restoration works also for other kinds of noise

• Working on detection and color images
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Thank you
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new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

FF-allocator (written in FF)

✴ Faster than posix, often faster than hoard and 
TBB

✦ unpublished, but available on sourceforge

✦ needs lot of comparative testing to be published

✴ Implements deferred deallocation to avoid ABA 
problem (i.e. garbage collection)

FF  allocator

The graph is now cyclic
and needs unbound 

queues to avoid 
deadlocks
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On programming model

✴ Shared memory or message passing (data) 
+ message passing (synchronisations)
✦ Graphs exactly describes the (true) data dependency pattern 

✦ Additional synchronisations can be added (e.g. locks) in the user code

✴ Queue can pass pointers or data
✦ Passing data means copying it. A proper usage of allocator might 

significantly enhance locality. Copying non strictly needed data is 
overhead.

✦ The balance depends on the application. Should be studied more.
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S1 S2 S3 S4

Socket 1 Socket 2

Shared cache or 
memory

Shared cache or 
memory

Shared cache/memory or network

MAMA MA MA
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Shared
memory

Macro 
Data Flow

Beowulf

Grid

MPP

Autonomic
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