
Pattern-based Parallel Edge Preserving
Algorithm for Salt-and-Pepper Image Denoising

Marco Aldinucci - Uni. of Torino, Italy, HPCAC University Award 2011 Winner
Maurizio Drocco - Uni. of Torino, Italy, supported by HPCAC University Award 2011

Massimo Torquati and Marco Danelutto - Uni. Pisa, Italy
Concetto Spampinato - Uni. of Catania, Italy
Massimiliano Meneghin - IBM Research, Ireland
Peter Kilpatrick - Queen’s Uni. Belfast, U.K.

HPC Advisory Council
Switzerland Conference 2012

March 13, 2012
Lugano

Outline
✴ ParaPhrase

✦ Parallel Patterns for Heterogeneous Multicore Systems

• EC-STREP FP7

✴ Concurrency and multi-core, the theoretical background
✦ a personal perspective

✴ FastFlow
✦ A programming model (and a library)

✦ Fast (<10 nS) core-to-core lock-free messaging

✦ Supporting multi-core and accelerators

✴ Testbed: a novel two-phase image/video denoiser
✦ clean salt-and-pepper noise up to 90%

✦ reconstruction quality at 50% close to jpeg compression

✦ demo

2

ParaPhrase

✴ ParaPhrase: Parallel Patterns for Heterogeneous
Multicore Systems
✦ 3 Year targeted research project (FP7 STREP)

• Runs from 1/10/11 to 30/9/14

• Funded by objective 3.4, “Computing Systems”

• Project Number ICT-2011-288570

✦ 9 partners from five countries

✦ €3.5M budget, €2.6M EU contribution

✦ Coordinated by the U. of St Andrews, Scotland, UK

3

Project Consortium

Multi-cores: programming issues

✴ We can muddle through on 2-16 cores
✦ modified sequential code may work

✦ we may be able to use multiple programs to soak up cores

✦ BUT larger systems are much more challenging

✴ Fundamentally, programmers must learn to “think parallel”
✦ this requires new high-level programming constructs

✦ you cannot program effectively while worrying about deadlocks etc

• they must be eliminated from the design!

✦ you cannot program effectively while fiddling with communication etc

• this needs to be packaged/abstracted!

5

The need of a programming model

✴ Applications programmers must be systems
programmers
✦ insufficient assistance with abstraction, too much complexity to manage

✴ Difficult/impossible to scale, unless the problem is simple

✴ Future multi/many-core
✦ Probably not just scaled versions of today’s multi/many-core

• Highly heterogeneous: message-passing, shared-memory cc-NUMA, variable cache
consistency, specialized cores (XML, crypto, ...), soft-cores (FPGA), ...

✴ The approaches provide libraries
✦ they need to provide abstractions, i.e. programming models

6

The Implications for Programming

✴ We must program heterogeneous systems in an
integrated way

✴ It will be impossible to program each kind of core
differently

✴ It will be impossible to take static decisions about
placement etc.

7

ParaPhrase Aims

Overall, we aim to produce a new pattern-based
approach to programming parallel systems.

1. develop high-level design and implementation patterns that are
capable of easily exposing useful parallelism on heterogeneous
multicore/manycore systems.

2. develop new dynamic mechanisms to support adaptivity for
heterogeneous multicore/manycore systems

3. verify that these patterns and adaptivity mechanisms can be used
easily and effectively to develop a wide range of real-world
applications

8

Concurrency and multi-core
theoretical background: a personal

perspective

9

Nowadays
✴ E.g. Intel Sandybridge, AMD Opteron

✴ cache-coherent
✴ 10 core per socket (20 contexts)
✴ cc-NUMA (as matter of a fact)

✴ NVidia/AMD GPGPU/Hybrid
✴ SIMD, no global synch
✴ performance only with proper and not automatic

memory hierarchy management

✴ Intel MIC CPU/GPGPU
✴ ring-based interconnection, variable coherency
✴ apparently even more NUMA

✴ IBM powerEN
✴ general purpose cores
✴ specialised cores, soft cores?

10

Quickpath

From programming/tuning viewpoint ...
the simplest is already too complex ...

✴ Exploit cache coherence

✴ Memory fences are expensive
✦ Increasing core count will make it worse

✴ Fine-grained parallelism is hard to achieve
✦ I/O bound problems, High-throughput, Streaming, Irregular DP problems

✦ Automatic and assisted parallelisation solves uniform&easy cases

• OpenMP, Par4all, ...

✴ From programming model viewpoint, SIMD/GPGPU (maybe)
worsen the scenario
✦ Well-understood programming model

✦ Atomic ops in memory (i.e. fences) are still needed

✦ Not everything can be described with do independent (a.k.a. map)

11

Micro-benchmarks: farm of tasks

void Emitter () {
for (i =0; i <streamLen;++i){
task = create_task ();
queue=SELECT_WORKER_QUEUE();
queue −>PUSH(task);

}
}

void Worker() {
while (!end_of_stream){
myqueue −>POP(&task);
do_work(task) ;
}

}

int main () {
spawn_thread(Emitter) ;
for (i =0; i <nworkers;++i){
spawn_thread(Worker);

}
wait_end () ;

}

E C

W
1

W
2

W
n

Used to implement: parameter sweeping, master-worker, etc.

12

Task farm with POSIX lock/unlock

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal 50 μS 5 μS 0.5 μS
E C

W
1

W
2

W
n

average execution time per task

13

Can we avoid locks?

✴ Under relaxed memory models, using CAS/atomic
ops
✦ “lock-free” data structures

✦ they perform better than lock-based

✦ they fence the memory and pay cache coherency reconciliation
overhead

✦ in GPUs ...

• CAS/atomic ... you have to go to the global memory

14

Lock vs CAS at fine grain (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS

15

E C

W
1

W
2

W
n

Re-starting from the basics

✴ Reducing the problem to the bare bones
✦ Producer-Consumer model (streaming)

✦ Directly control thread blocking using non-blocking
synchronisations

✦ Directly design the “data channel”

• Having clear how data move in the whole memory hierarchy

✴ Restarting from the FIFO queue P C

16

Interaction models: theoretical background
(in a nutshell)

✴ low-level synchronisation in the shared memory
model
✦ Mutual Exclusion (mutex)

• typically used as basic building block of synchronisations

✦ Producer Consumer

✴ they are not equally demanding
✦ Mutual Exclusion is inherently more complex since requires

deadlock-freedom

• require interlocked ops (CAS, ...), that induces memory fences, thus cache invalidation

• Dekker and Bakery requires Sequential Consistency (++)

✦ Producer Consumer is a cooperative (non cyclic) process

17

Recap: coherence and consistency

✴ Memory/Cache Coherence
✦ Deal with multiple replicas of the same location in different caches

✴ Memory Consistency
✦ Deal with the ordering in which writes

and reads at different locations
take effect in memory (issued by either
the same or different processors/cores)

18

write(A,3)

write(A,1)
Thread 1

Thread 2
read(A,?)

FastFlow SPSC queues

✴ Proved to be correct under SC

✦ doesn’t work under weaker
models

• TSO, e.g. x86

• WO, e.g. PPC, ARM

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

19

Lamport FIFO - 1983

Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

push_nonbocking(data) {
 if (NULL != buffer[head]) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {
 data = buffer[tail];
 if (NULL == data) {
 return EWOULDBLOCK;
 }
 buffer[tail] = NULL;
 tail = NEXT(tail);
 return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997)

20

(WMB)
For any
model
weaker

than TSO

Lamport FIFO - 1983

FastFlow SPSC queues

push_nonbocking(data) {
 if (NEXT(head) == tail) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {

 if (head == tail) {
 return EWOULDBLOCK;
 }
 data = buffer[tail];
 tail = NEXT(tail);
 return 0;
}

push_nonbocking(data) {
 if (NULL != buffer[head]) {
 return EWOULDBLOCK;
 }
 buffer[head] = data;
 head = NEXT(head);
 return 0;
}

pop_nonblocking(data) {
 data = buffer[tail];
 if (NULL == data) {
 return EWOULDBLOCK;
 }
 buffer[tail] = NULL;
 tail = NEXT(tail);
 return 0;
}

FastFlow FIFO
derived from P1C1 (Higham and Kavalsh, ISPAN 1997)

head and tail are
mutually invalidated by

producer and consumer
1 cache miss every push

and pop (at least)

20

excluding “true” deps

extended domain
on void *

(WMB)
For any
model
weaker

than TSO
producer read/write head
consumer read/write tail

no misses

Lock vs CAS vs SPSC FastFlow (50 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

21

Lock vs CAS vs SPSC FastFlow (5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

22

Lock vs CAS vs SPSC FastFlow (0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

23

Medium grain (5 μS workload)

E C

W
1

W
2

W
n

24

Fine grain (0.5 μS workload)

E C

W
1

W
2

W
n

25

Producer-Cons with FF queue: latency

26

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge
18MB L3 shared cache, 256K L2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on different cores same CPU

1.50 1.37 0.83

1.33
0.75 0.82 0.50 0.46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e
c
o

n
d

s

buffer size

P and C on different CPUs

3.33
3.15

2.23

2.91

3.56

4.08

2.43

2.76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on same core distinct contexts

0.19 0.14 0.12 0.11 0.09 0.11 0.11 0.11

different sockets

DK Panda said today
MPI is ~190 ns

same socket same core different contexts same socket different cores different

Wait-free fence-free unbound dynamic
queue (uSPSC)

27

DR
AF
T

1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, M. Torquati. An Efficient
Synchronisation Mechanism for Multi-Core Systems. EuroPar 2012. Submitted.

tail head

dynamic
linked list
of circular

buffers

P C

Bandwidth test (with uSPSC)
http://www.1024cores.net/home/technologies/fastflow

S2

S3 S4

S1 Sn

...

28

50K

100K

150K

200K

1 8 16 24 32 40 48 56 64

T
h
ro

u
g
h

p
u
t
(m

sg
/s

)

n. threads

uSPSC
dSPSC

dSPSC no cache

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge
18MB L3 shared cache, 256K L2

Linked list w/ dyn alloc
Michael-Scott queue

well-known ~ 400 citations 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

64 1024 8192

n
a
n
o
se

co
n
d
s

buffer size

mapping 1
mapping 2
mapping 3

Linked list with pooling
Opt Michael-Scott queue

(our result)

20x faster

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a
n
o
se

co
n
d

s

buffer size

mapping 1
mapping 2
mapping 3

Linked list + circular buffer
FastFlow queue

(our result)

12x faster

same core
same socket
different sockets

Speedup

<35 ns irrespectively
of the mapping

http://www.1024cores.org
http://www.1024cores.org

Related Work: Lock-free, CAS-free, wait-free

✴ Single-Producer-Single-Consumer FIFO queues
✦ Lamport et al. 1983 Trans. PLS (Sequential consistency only - passive)

✦ Higham and Kavalsh. 1997 ISPAN (P1C1 - TSO + proof - passive)

✦ Giacomoni et al. 2008 PPoPP (TSO + cache slipping - passive)

✴ Multiple-Producers-Multiple-Consumers FIFO queues
✦ with CAS (two of them) - Michael and Scott (PODC96)

• Also implemented in FastFlow, require deferred reclamation/hazard pointers to avoid ABA
problem

✦ without CAS - passive ➠ Cannot be done

✦ without CAS - active ➠ FastFlow

✴ Extending the taxonomy with locking algorithms is clearly
useless

29

Why elaborating on queues?

✴ Queues are the base of Producer-Consumer
✦ reference paradigm for data-centric and data-flow models

✦ orthogonal and complementary to Transactional Memories

• that address competition

✦ can be used in both shared memory and message passing models

✴ Queues are the primary (maybe the only) global
synchronisation mechanism in current GPGPUs
✦ take a look to NVidia/CUDA programming manual

✦ efficient global synch can pave the way to a broader usage of GPUs

• is it possible an atomic-free global memory queue on GPUs?

30

FastFlow

31

Lock-free and CAS-free?

✴ Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done
✦ Producer-Consumer is inherently weaker with respect to Mutex

✦ It does require the cooperation of partners whereas Mutex does not

✴ Expressive enough to build a streaming (or dataflow)
programming framework
✦ MPMC = SPSC + mediator threads

✴ But what about productivity at large scale?
✦ Write a program is defining a graph encoding true dependencies ... not

really easy

32

FastFlow is based on producer-consumer

✦ Lock-free/fence-free non-blocking synchronisations

✦ C++ STL-like implementation

✦ thread-model agnostic (pthreads, QT, windows threads, ...)

✦ compliant with other synchronisation mechanisms in the business code (e.g. locks and
semaphores)

33

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

F
a
st
F
lo
w

Problem Solving
Environment

High-level
programming

Low-level
programming

Run-time
support

Hardware

Applications

E C

P C

Producer Consumerlock-free SPSC queue

SPMC MPSC

Wn

W1

Farm

input
stream

output
stream

E C

Wn

W1

D&C

uses
E

E

SPMC

C

MPSC

Pattern-based approach: rationale

✴ Abstract parallelism exploitation pattern by parametric code
✦ E.g. higher order function, code factories, C++ templates, ...

✦ Can composed and nested as programming language constructs + offloading

✦ Stream and Data Parallel

✴ Platform independent
✦ Implementations on different multi/many-cores

✦ Support for hybrid architectures thanks to pattern compositionality

✴ Provide state-of-the-art, parametric implementation of each
parallelism exploitation pattern
✦ With natural way of extending patterns, i.e. OO

✦ Functional (seq code) and tunable extra-functional (QoS) parameters

34

✴ farm
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA streams - automatic exploitation of asynch comm

✴ pipeline
✦ on CPU - pipeline

✦ on GPU - sequence of kernel calls or global mem synch

✴ map
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT - parallelism exploitation

✴ reduce
✦ on CPU - master-worker - parallelism exploitation

✦ on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

✴ D&C
✦ on CPU - master-worker with feedback - // exploitation

✦ on GPU - working on it, maybe loop+farm

Patterns, their implementation, and their
purpose

35

stream[k]

copy_D2H

kernel

copy_H2D

stream[0]

farm_start

stream[1] stream[n]

farm_start

Composition

✴ Composition via C++ template meta-programming

✦ CPU: Graph composition

✦ GPU: CUDA streams

✦ CPU+GPU: offloading

✴ farm{ pipe }

✴ pipe(farm, farm)

✴ pipe(map, reduce)

✴

36

copy_D2H

kernel

copy_H2D

farm_start

copy_D2H

kernel

copy_H2D

copy_D2H

kernel

copy_H2D

farm_start

On my personal view of MPI ...

✴ I love it, I’ve using it for 15 years
✦ as a target language for building compilers for high-level parallel languages

✴ MPI collective operations are good

✴ they are an example of patterns (a.k.a. skeletons)
✦ even if not particularly high-level

✴ the problem are Send/Rcv
✦ and the other over hundred (and counting) operations?

• are they perceived as really useful from anybody?

✦ they are on the language as well, and people use them

✴ one problem of “cars” are drivers (and crashes)
✦ how much expertise do you need to write/tune/debug something barely decent?

37

At the bottom line, it is just abstracting &
engineering well-known concepts

38

S05: High Performance Computing with CUDA

Data-parallel Algorithms &Data-parallel Algorithms &

Data StructuresData Structures

John Owens

UC Davis

7
S05: High Performance Computing with CUDA

Think In ParallelThink In Parallel

The GPU is a data-parallel processor

Thousands of parallel threads

Thousands of data elements to process

All data processed by the same program

SPMD computation model

Contrast with task parallelism and ILP

Best results when you “Think Data Parallel”

Design your algorithm for data-parallelism

Understand parallel algorithmic complexity and efficiency

Use data-parallel algorithmic primitives as building blocks

8
S05: High Performance Computing with CUDA

Data-Parallel AlgorithmsData-Parallel Algorithms

Efficient algorithms require efficient building blocks

This talk: data-parallel building blocks

Map

Gather & Scatter

Reduce

Scan

+ farm + pipeline + D&C

at least to manage
automatically asynchronous
copies

Recap

✴ Patterns at the high-level
✦ Currently as C++ templates

✦ Set of patterns can be extended, semantics of patterns can be
changed, complexity gracefully increase with semantic distance

✴ Used to generate cyclic streaming networks (of
threads, ...)
✦ Graphs, describing true data dependencies. Can be composed and

transformed as graphs

✦ Cyclic graphs need unbound queue

✦ Heterogeneous cores, thread affinity, memory affinity, NUMA, can
be managed while mapping graph onto the metal

39

Applications (see http://di.unito.it/fastflow)

✴ Smith-Waterman (based on SWPS3/SSE2, ParCo 10)
✦ Recently discovered it is used as baseline for FPGA design at it seems it is among the

fastest SW solutions

✴ C4.5 (EMCL-PKDD 10, Concurrency prat. exp. submitted)

✴ StochKit-ff (HiBB 11)

✴ MonteCarlo sims & Gillespie’s biological sims (PDP 11, HiBB 11)

✴ Cholesky (PDP 12)

✴ nProbe-ff (part of nTop software, ParCo 11)

✴ pbzip-ff (Wiley book 12)

✴ nqueens, k-means, fibonacci, Mandelbrot QT, and many micro-
benchmarks

✴ Two-phase edge-preserving denoiser (IEEE IPTA submitted)

40

http://di.unito.it/fastflow
http://di.unito.it/fastflow

2012: Cholesky fact vs (very efficient)
PLASMA libraries - IEEE PDP 2012

41

C4.5 (Fine grain - irregular D&C)
PKDD 2011

42

Smith Waterman vs TBB vs OpenMP vs Cilk
Parallel Computing 2010

43

From users: Intel or AMD

✴ We always test on both platforms
✦

✴ Assembler
✦ MONITOR/MWAIT instruction appear interesting for non-blocking

synchronisations

• accessible only in Ring 0, why?

• IBM PowerEN ...

✴ Memory bandwidth is the key
✦ but memory affinity tools appear to be quite primitive in both platforms

• how data structures are related with access pattern?

• we are trying to address the problem with patterns ...

44

A novel two-phase edge
preserving parallel de-noising

45

Maurizio Drocco
University of Torino (MSc. student)

with the support of HPC AC university award

Two-phase denoising + Demo

46

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal
Baboon standard

test image
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB MAE 2.67

Denoising explained

48

 Adaptive
median filter
different pixels are

independent and can
be easily processed

in parallel
pixels are read-only

 Iterative
variational method
answer to the question:

which is the greyscale level
that better “integrate” in

the surrounding
(i.e. keeps edges)

at each iteration an
approximation of restored

pixels is available

map p in pixels
 while (winsize<MAX)
 if (homogenous(p,winsize))
 winsize++;
 else if isImpluse(p) return NOISY;
 return NOT_NOISY;

while !fixpoint
 map u in N (noisy pixels)
 new_u = value_that_minimize F(u);
 reduce(u in N,new_u in NEW_N, diff);

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵ 2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵ 2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

1

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵ 2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

On the algorithm
✴ Adaptive median filters

✦ well-known

✦ smooth the image if used in rebuilding phase

✴ Variational methods
✦ edge-preserving, can be used for any kind of noise

✦ the formula is well-known, our algorithm is particularly fast

• because we found several loop invariants in the process

✦ if used alone can destroy “good” pixels

✦ not used up to now because too slow

• > 1 h on Matlab to rebuild a 256x256 image with 30% of noise

✴ Coupling them
✦ detect: increase the speed by reducing false positives

✦ denoise: guarantee a good restoration because “touches” only noisy points

49

noise 70% restored

original

Offloading on soft (i.e. not used cores) and
HW accelerators

✴ offloading
✦ onto other cores and

accelerators

51

Speedup (multi-core)

52

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30
sp

ee
du

p
n. workers

variant: spd-ff-border, size: 512x512, n. cycles: 60

ideal
10 % noisy
50 % noisy
90 % noisy

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

sp
ee

du
p

n. workers

variant: spd-ff, size: 4096x4096, n. cycles: 80

ideal
10 % noisy
50 % noisy
90 % noisy

4 sockets x 8 core x 2 contexts
Xeon E7-4820 @2.0GHz Sandy Bridge

18MB L3 shared cache, 256K L2

Parallelism exploitation and patterns

✴ Application programmed high-level with FastFlow
✦ using Intel OpenCV

• be careful, it is not fully thread-safe, all non thread-safe operation should be managed
by a single thread (i.e. main)

✦ using offloading support, i.e. wrap a pattern-based code into a soft
or HW “accelerator”

• nice technique to port existing legacy code with very low effort

• support for “semi-automatic” loop streamization

✴ Let us understand how through an example
✦ Two-phase denoising - video version

53

Edge-preserving denoiser: video

#include <opencv/highgui.h>
#include <opencv/cv.h>

int main(int argc, char *argv[]) {
 CvCapture *capture;
 IplImage * frame,clean_frame;
 char key;
 vector<noisy_t> noisy;
 cvNamedWindow("Video", CV_WINDOW_AUTOSIZE);
 capture = cvCreateCameraCapture(CV_CAP_ANY);
 //capture = cvCreateFileCapture("/path/to/your/video/test.avi");
 while(true) {
 frame = cvQueryFrame(capture); // get a frame from device
 noisy = myDetect(frame); // detect noisy pixels
 clean_frame = myDenoise(frame,noisy); // denoise the frame
 cvShowImage("Video", clean_frame); // show the denoised frame
 key = cvWaitKey(100);
 }
 cvReleaseCapture(&capture);
 cvDestroyWindow("Video");
}

54

Denoising explained

55

 Adaptive
median filter
different pixels are

independent and can
be easily processed

in parallel
pixels are read-only

 Iterative
variational method
answer to the question:

which is the greyscale level
that better “integrate” in

the surrounding
(i.e. keeps edges)

at each iteration an
approximation of restored

pixels is available

map p in pixels
 while (winsize<MAX)
 if (homogenous(p,winsize))
 winsize++;
 else if isImpluse(p) return NOISY;
 return NOT_NOISY;

while !fixpoint
 map u in N (noisy pixels)
 new_u = value_that_minimize F(u);
 reduce(u in N,new_u in NEW_N, diff);

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵ 2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵ 2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

1

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵ 2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

In the video case
the two stages

can be pipelined
on

m-core+m-core
m-core+GPGPU
GPGPU+GPGPU

and you haven’t to
decide it

at design time o
port the code

pipeline

Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

 thr 1

dispatching

myDetect

myDenoise

 thr n

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Farm(Pipeline(myDetect,myDenoise))

acceleratorY

display

gathering

Changing the structure does not require re-writing business code (gray)

56

Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

myDetect

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Pipeline(myDetect,Map(myDenoise))

accelerator

Y

display

myDenoise
(CUDA)

Changing the structure does not require re-writing business code (gray)

56

Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

 thr 1

dispatching

myDetect

myDenoise

 thr n

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Farm(Pipeline(myDetect, Map(myDenoise)))

acceleratorY

display

gathering

myDenoise
(CUDA)

myDenoise
(CUDA)

Changing the structure does not require re-writing business code (gray)

56

FF multi-core vs FF hybrid

57

noise
FF 32 cores

Intel 4x8x2 2GHz
FF 8 cores (detect) +
Tesla C2050 (denoise)

Seq
Intel 4x8x2 2GHz

Lena 512x512Lena 512x512Lena 512x512Lena 512x512

10 1.8 s 1.9 s 32 s

50 6.5 s 2.3 s 162 s

90 10.9 s 2.8 s 290 s

Space 4096x4096Space 4096x4096Space 4096x4096Space 4096x4096

10 78 s 12 s 2093 s

50 373 s 46 s 10400 s

90 665 s 77 s 18571 s

Demo

58

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 20 40 60 80 100 120

PS
N

R

n. cycles

image: space, size: 2048x2048, noise: 90%

flat
border

std
cluster

Nondeterministic variants &
Convergence speed

✴ flat (used in CUDA version)
✴ use block halo, block size =1
✴ do independent
✴ deterministic - slow convergence
✴ easy CPU and GPU - can be linearized

✴ border
✴ use block halo
✴ do independent on tiles, do across within tiles
✴ nondeterministic - fast convergence
✴ easy on CPU and GPU - cannot be linearized

✴ std (used in multicore version)
✴ don’t use a block halo
✴ do independent on tiles, do across within tiles
✴ nondeterministic - fast convergence
✴ easy CPU and GPU - cannot be linearized

✴ cluster
✴ do independent on tiles, do across within tiles
✴ deterministic - fast convergence
✴ easy on CPU, difficult on GPU - can be linearized

59

Conclusions
✴ FastFlow C++ pattern-based framework

✦ A tiny, lightweight & open research framework

• 2 years old - 6K downloads - 30K contacts - x86/PPC/ARM(?) + Linux/Mac/Win

• Adopted as one run-time technology in ParaPhrase

• Laboratory to experiment new run-time solutions

• GPGPU integration (working on), Infiniband RDMA integration (working on),
HW blocking reads (thinking on), HW transactional mem (thinking on) ...

• Stream-specific parallel memory allocator: faster than TBB (testing)

✦ A step forward in parallel programming models

• Data-centric, focus on messaging and synchronization, thread model agnostic

• support both message passing and shared memory

✦ High-level = performance & portability

• Speedup starting from ~20 clock cycles workload on standard x86_64 (TBB ~ 50K)

• FF/AVX Smith-Waterman among fastest existing SW solutions

• Tested on dozen of apps, comparable or faster than TBB/OpenMP

60

Conclusions

✴ GPGPUs
✦ Needs high-level, CUDA/OpenCL too close to the metal

✦ Well integrate with functional style and higher order partterns

✴ Two-phase denoising
✦ Novel, fast and efficient

• Works up to 95% or noise, comparable to jpeg on 50% of noise

✦ CPU/GPGPUs/Hybrid

✦ Edge-preserving restoration works also for other kinds of noise

• Working on detection and color images

61

Thank you

62

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

FF-allocator (written in FF)

✴ Faster than posix, often faster than hoard and
TBB

✦ unpublished, but available on sourceforge

✦ needs lot of comparative testing to be published

✴ Implements deferred deallocation to avoid ABA
problem (i.e. garbage collection)

FF allocator

The graph is now cyclic
and needs unbound

queues to avoid
deadlocks

63

On programming model

✴ Shared memory or message passing (data)
+ message passing (synchronisations)
✦ Graphs exactly describes the (true) data dependency pattern

✦ Additional synchronisations can be added (e.g. locks) in the user code

✴ Queue can pass pointers or data
✦ Passing data means copying it. A proper usage of allocator might

significantly enhance locality. Copying non strictly needed data is
overhead.

✦ The balance depends on the application. Should be studied more.

64

On programming model

✴ Shared memory or message passing (data)
+ message passing (synchronisations)
✦ Graphs exactly describes the (true) data dependency pattern

✦ Additional synchronisations can be added (e.g. locks) in the user code

✴ Queue can pass pointers or data
✦ Passing data means copying it. A proper usage of allocator might

significantly enhance locality. Copying non strictly needed data is
overhead.

✦ The balance depends on the application. Should be studied more.

S1 S2 S3 S4

Socket 1 Socket 2

Shared cache or
memory

Shared cache or
memory

Shared cache/memory or network

MAMA MA MA

64


`````````````

Thanks to Massimo Torquati & Marco Danelutto Computer Science 
Dept. - University of Pisa - Italy  Massimiliano Meneghin IBM Research, 
Ireland Peter Kilpatrick Queen’s University Belfast, U.K. Maurizio 

Shared
memory

Macro 
Data Flow

Beowulf

Grid

MPP

Autonomic

65

P3L
1991

SKiE
1997

OCamlP3L
1998

SKElib
2000

Lithium
2002

Muskel
2006

FastFlow
2009

Eskimo
2003

ASSIST
2001

ASSISTant
2008

GCM
2008

G
PG

PU
s


