
A Parallel Edge Preserving Algorithm
for Salt and Pepper Image Denoising

Marco Aldinucci - Uni. of Torino, Italy
Parallel and distributed computing research cluster

Massimo Torquati - Uni. Pisa, Italy
Maurizio Drocco - Uni. of Torino, Italy
Concetto Spampinato - Uni. of Catania, Italy
Simone Palazzo - Uni. of Catania, Italy

IMPACT

Outline

✴ A two-phase image/video denoiser

✴ FastFlow
✦ A programming model (and a library)

✦ Fast (<10 nS) core-to-core lock-free messaging

✦ Fast zero-copy distributed messaging

✦ Supporting multi-core and accelerators

✴ two-phase denoiser: parallel implementation
✦ clean salt-and-pepper noise up to 90%

✦ demo

2

A two-phase image
denoiser for salt & pepper

3

Salt&Pepper noise

4

✴ Salt&Pepper noise
✦ Electronic and signal noise

✦ Uniform distribution of “saturated”
white and black pixels

• Often measured as percentage of affected vs overall pixels

✴ Typically restored using statistic filters
✦ e.g. median, median-adaptive

✦ Not satisfactory for high levels of noise, also good pixels are
filtered (image is smoothed)

0%

30%

70%

Improved S&P filtering

✴ Performance
✦ Improved, if detection faster than restoration

✦ Rationale: efficient detection + high-quality denoising

• they can be pipelined and independently parallelized

6

Detect Denoise

Noise mapNoisy image Restored image

Impulse detector
- progressive switching median
- adaptive median
- neural/bayesian networks
- fuzzy/neuro-fuzzy logic

Restoration
- median
- variational (Nikolova)

Variational method
✴ Iterative optimization problem

✦ Theoretically and practically more expensive than statistical filtering

• Matlab w 256x256 image with 50% of noise needs hours of computation time

✦ Many local minimum, fixed point criteria for termination not trivial

• Quasi-Newtonian methods with PSNR and MAE variation can be used

7

regularization term data fidelity term

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵  2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

Results: quality (1024x1024 grayscale)

8

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal
Baboon standard

test image
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB MAE 2.67

noise 70%

noise 70% restored

noise 70% restored

original

Results: quality (256x256 grayscale)

10

Comparison with single phase Chan’s variational method

PSNR and MAE on standard benchmarks

On the freedom of low-level methods

✴ MPI, thread synchronizations, and CUDA can be
used to parallelize almost everything

✴ They give you lot freedom, you can write almost
everything, move you data in any fashion

✴ Eventually “they are as a “car”, you can drive where you
like, when you want, ...”
✦ (cit. D.K. Panda, leader of the MPI-MVAPICH group)

11

On the freedom of low-level methods

12

Design your algorithm

car

On the freedom of low-level methods

12

... and running it!

FastFlow

http://mc-fastflow.sourceforge.net/

•C++ pattern-based framework, open-source LGPL

•A tiny, lightweight & open research framework for HPC

• 5K lines of code

•3 years old - over 8K downloads - over 40K contacts

•x86/PPC/ARM + Linux/Mac/Win/iOS

•Multicore, GPGPU, distributed (TCP & Infiniband)

EU FP7 NoE EU FP7 Strep 3.5 M€

http://mc-fastflow.sourceforge.net
http://mc-fastflow.sourceforge.net

Lock vs Nonblocking CAS (fine grain 0.5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS

14

E C

W
1

W
2

W
n

FastFlow (multicore)

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA & cc-NUMA

Applications on multicore, many-core
Efficient and portable - designed with high-level patterns

Layer 1: Simple streaming networks

DR
AF
T

1 int size = N; //SPSC size

2 bool push(void∗ data) {
3 if (buf w�>full()) {
4 SPSC∗ t = pool.next w();

5 if (! t) return false;

6 buf w = t;

7 }
8 buf w�>push(data);

9 return true;

10 }
11 bool pop(void∗∗ data) {
12 if (buf r�>empty()) {
13 if (buf r == buf w) return false;

14 if (buf r�>empty()) {
15 SPSC∗ tmp = pool.next r();

16 if (tmp) {
17 pool. release (buf r) ;

18 buf r = tmp;

19 }
20 }
21 }
22 return buf r�>pop(data);

23 }

25 struct Pool {
26 dSPSC inuse;

27 SPSC cache;

29 SPSC∗ next w() {
30 SPSC∗ buf;

31 if (!cache.pop(&buf))

32 buf = allocateSPSC(size);

33 inuse.push(buf);

34 return buf;

35 }
36 SPSC∗ next r() {
37 SPSC∗ buf;

38 return (inuse.pop(&buf)? buf : NULL);

39 }
40 void release(SPSC∗ buf) {
41 buf�>reset(); // reset pread and pwrite

42 if (!cache.push(buf))

43 deallocateSPSC(buf);

44 }
45 }

Fig. 3: Unbounded wait-free uSPSC queue implementation.

impossible since, if the consumer switches to the next bu↵er while the previous
one is not really empty, a data loss will occur. In the next section we prove that
the if condition at line §3.�� is su�cient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue sketched in Fig. 3 is correct
(and wait-free) under any memory consistency model provided that it is built with
internal SPSC queues with size > 1.

Proof. The SPSC queue used as basic building block of the uSPSC queue has
been proved correct in [18,13]. Both the producer and the consumer initially
work on the same bu↵er. The correct execution of pop and push is guaranteed
by the correctness of the bu↵er (i.e. the internal SPSC queue) up to the moment
the bu↵er becomes full and the producer starts writing to a new bu↵er. We have
two cases: the bu↵er the consumer is reading from is either non-empty or empty.
In the former case, the correctness is again ensured by bu↵er correctness. The
latter case is more subtle.

In a relaxed memory consistency model the consumer can be aware that the
producer has changed the writing bu↵er only with the writing of the data of the
previous push because of the Write Memory Barrier (WMB) at line §1.�. In fact,
without the WMB, the new value of buf w (line §3.�) and the value to written
to the bu↵er (buf[pwrite] in the previous push at line §1.�) might appear in
memory in any order. Thus — in principle — it can be possible that the reading
bu↵er buf r is still perceived as empty and a new writing bu↵er has been already
started (buf r 6= buf w); the condition at line §3.�� could therefore evaluate to
true even if the previous bu↵er is not actually empty. This condition might
lead to data loss because the consumer might overtake and abandon a bu↵er
still holding a valid value. In the uSPSC implementation this cannot happen

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati. An Efficient Synchronisation
Mechanism for Multi-Core Systems. EuroPar 2012.

tail head

dynamic
linked list
of circular

buffers

P C

16

Layer 1: Simple streaming networks

17

4 sockets x 8 core x 2 contexts

Xeon E7-4820 @2.0GHz Sandy Bridge
18MB L3 shared cache, 256K L2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on different cores same CPU

1.50 1.37 0.83

1.33
0.75 0.82 0.50 0.46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e
c
o

n
d

s

buffer size

P and C on different CPUs

3.33
3.15

2.23

2.91

3.56

4.08

2.43

2.76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 128 256 512 1k 2k 4k 8k

n
a
n
o
s
e

c
o
n
d
s

buffer size

P and C on same core distinct contexts

0.19 0.14 0.12 0.11 0.09 0.11 0.11 0.11

different sockets

MPI is ~190 ns
(D.K. Panda)

same socket same core different contexts same socket different cores different

Lock vs CAS vs SPSC FastFlow (5 μS)

2 3 4 5 6 7 8
0

2

4

6

8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS FastFlowE C

W
1

W
2

W
n

18

Medium grain (5 μS workload)

E C

W
1

W
2

W
n

19

FastFlow (multicore)

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA & cc-NUMA

Applications on multicore, many-core
Efficient and portable - designed with high-level patterns

Taxomy
✴ Data Parallel

✦ is a method for parallelizing a single task by processing independent data elements of
this task in parallel. The flexibility of the technique relies upon stateless processing
routines implying that the data elements must be fully independent. Data Parallelism
also supports Loop-level Parallelism where successive iterations of a loop working on
independent or read-only data are parallelized in different flows-of-control and
concurrently executed.

✴ Task Parallel
✦ is explicit in the algorithm and consists of running the same or different code on

different executors (cores, processors, machines, etc.). Different flows-of-control
(threads, processes, etc.) may communicate with one another as they work.
Communication usually takes place to pass data from one thread to the next as part of
the same data-flow graph.

✴ Stream Parallel
✦ can be used when there exists a partial or total order in a computation. By processing

data elements in order, local state may be maintained in each filter.

21

Layer 3: streaming networks patterns

• Composition via C++ template meta-programming

• CPU: Graph composition

• GPU: CUDA streams

• CPU+GPU: offloading

• farm{ pipe }

• pipe(farm, farm)

• pipe(map, reduce)

•
22

copy_D2H

kernel

copy_H2D

farm_start

copy_D2H

kernel

copy_H2D

copy_D2H

kernel

copy_H2D

farm_start

Multi-core

GPGPU

• farm
• on CPU - master-worker - parallelism exploitation

• on GPU - CUDA streams - automatic exploitation of asynch
comm

• pipeline
• on CPU - pipeline

• on GPU - sequence of kernel calls or global mem synch

• map
• on CPU - master-worker - parallelism exploitation

• on GPU - CUDA SIMT - parallelism exploitation

• reduce
• on CPU - master-worker - parallelism exploitation

• on GPU - CUDA SIMT (reduction tree) - parallelism exploitation

• D&C
• on CPU - master-worker with feedback - // exploitation

• on GPU - working on it, maybe loop+farm

Layer 3: streaming networks patterns

stream[k]

copy_D2H

kernel

copy_H2D

stream[0]

farm_start

stream[1] stream[n]

farm_start

23

At the bottom line, also on GPUs, it is matter of
abstracting & engineering well-known concepts

S05: High Performance Computing with CUDA

Data-parallel Algorithms &Data-parallel Algorithms &

Data StructuresData Structures

John Owens

UC Davis

7
S05: High Performance Computing with CUDA

Think In ParallelThink In Parallel

The GPU is a data-parallel processor

Thousands of parallel threads

Thousands of data elements to process

All data processed by the same program

SPMD computation model

Contrast with task parallelism and ILP

Best results when you “Think Data Parallel”

Design your algorithm for data-parallelism

Understand parallel algorithmic complexity and efficiency

Use data-parallel algorithmic primitives as building blocks

8
S05: High Performance Computing with CUDA

Data-Parallel AlgorithmsData-Parallel Algorithms

Efficient algorithms require efficient building blocks

This talk: data-parallel building blocks

Map

Gather & Scatter

Reduce

Scan

+ farm + pipeline + D&C

at least to manage
automatically asynchronous
copies

+ distributed

• network channels

• P2P or collective

• used as frontier node of streaming graph

• can be used to merge graphs across distributed platforms

• No changes to programming model

• when passing pointers data is serialised

M. Aldinucci, S. Campa, M. Danelutto, M. Torquati, P. Kilpatrick. Targeting distributed systems in FastFlow. CGW/EuroPar 2012

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Simple streaming networks
Lock-free SPSC queues + threading model

FastFlow

Multicore and manycore
SMP: cc-UMA & cc-NUMA

Applications on multicore, many core & distributed platforms of multicores
Efficient and portable - designed with high-level patterns

Distributed platforms
Clouds, clusters of SMPs

Simple streaming networks
Zero copy networking + processes model

Arbitrary streaming networks
Collective communications + FF Dnodes

25

Pattern-based approach: rationale
• Abstract parallelism exploitation pattern by parametric code

• E.g. higher order function, code factories, C++ templates, ...

• Can composed and nested as programming language constructs +
offloading

• Stream and Data Parallel

• Platform independent

• Implementations on different multi/many-cores

• Support for hybrid architectures thanks to pattern compositionality

• Rationale

• Decrease to bare minimum synchronization overhead (speedup)

• Provide ready-to-use patterns (productivity, time-to-market)
26

Two-phase edge preserving
parallel de-noising

27

Denoising explained (video)

30

 Adaptive
median filter
different pixels are

independent and can
be easily processed

in parallel
pixels are read-only

 Iterative
variational method
answer to the question:

which is the greyscale level
that better “integrate” in

the surrounding
(i.e. keeps edges)

at each iteration an
approximation of restored

pixels is available

map p in pixels
 while (winsize<MAX)
 if (homogenous(p,winsize))
 winsize++;
 else if isImpluse(p) return NOISY;
 return NOT_NOISY;

while !fixpoint
 map u in N (noisy pixels)
 new_u = value_that_minimize F(u);
 reduce(u in N,new_u in NEW_N, diff);

detect

denoise
4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵  2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵  2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

1

4

only irregularities due to the affecting noise, thus leaving out high-level discontinuities (edges). � and ↵ are the

regularization parameters that balance the effects of both mentioned terms. Among all the functionals F(u) (see

[21]) for edge preserving proposed during the last fifteen years, we have selected the one proposed in [15]:

F

d

|
N

(u) =

X

(i,j)2N

[|u
i,j

� d

i,j

|+ �

2

(S1 + S2)] (2)

where

S1 =

X

(m,n)2Vi,j\N

2 · '(u
i,j

� d

m,n

) (3)

S2 =

X

(m,n)2Vi,j\N

c

'(u

i,j

� u

m,n

) (4)

where N represents the noisy pixels set, N c the set of uncorrupted pixels, and V

i,j

is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the corrupted image. As in [15], we have used the following

' function that provides the best trade-off between edge preserving and denoising:

'(t) = |t|↵ with 1 < ↵  2 (5)

The values of ↵ and � were, respectively, set to 1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function '.

The minimization problem is then solved by an algorithm that works on the residuals z = u� y of the functional

(1) and it is following reviewed:

– Initialize z

(0)
ij

= 0 for each (ij) 2 A;

– At each iteration k, calculate, for each (ij) 2 A,

⇠

(k)
i,j

= �

X

(m,n)2Vi,j

'̇ (y

i,j

� z

i,j

� y

m,n

)

where z

m,n

, for (m,n) 2 V i, j, are the latest updates and '̇ is the derivative of '.

– If ⇠(k)
i,j

 1, z(k)
i,j

will be set to 0. If not, z(k)
i,j

is the solution of the following equation:

�

X

(m,n)2Vi,j

'̇

⇣
z

(k)
i,j

+ y

i,j

� z

m,n

� y

m,n

⌘
= sign

⇣
⇠

(k)
i,j

⌘

The quasi-Newton method [22] is recursively applied to find the restored image û that minimizes the functional

shown in (2). The convergence criterion is |z(k) � z

(k�1)| < 1.

III. SEQUENTIAL ALGORITHM: EXPERIMENTAL EVALUATION

The algorithm has been prototyped in C++ and tested on a single core of an Intel workstation with 2 quad-core

Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed on four images (256-by-256 and 8-bit gray-scale):

December 20, 2011 DRAFT

In the video case
the two stages

can be pipelined
on

m-core+m-core
m-core+GPGPU
GPGPU+GPGPU

and you haven’t to
decide it

at design time o
port the code

pipeline

Speedup (multi-core)

31

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30
sp

ee
du

p
n. workers

variant: spd-ff-border, size: 512x512, n. cycles: 60

ideal
10 % noisy
50 % noisy
90 % noisy

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

sp
ee

du
p

n. workers

variant: spd-ff, size: 4096x4096, n. cycles: 80

ideal
10 % noisy
50 % noisy
90 % noisy

4 sockets x 8 core x 2 contexts
Xeon E7-4820 @2.0GHz Sandy Bridge

18MB L3 shared cache, 256K L2

Edge-preserving denoiser: video

#include <opencv/highgui.h>
#include <opencv/cv.h>

int main(int argc, char *argv[]) {
 CvCapture *capture;
 IplImage * frame,clean_frame;
 char key;
 vector<noisy_t> noisy;
 cvNamedWindow("Video", CV_WINDOW_AUTOSIZE);
 capture = cvCreateCameraCapture(CV_CAP_ANY);
 //capture = cvCreateFileCapture("/path/to/your/video/test.avi");
 while(true) {
 frame = cvQueryFrame(capture); // get a frame from device
 noisy = myDetect(frame); // detect noisy pixels
 clean_frame = myDenoise(frame,noisy); // denoise the frame
 cvShowImage("Video", clean_frame); // show the denoised frame
 key = cvWaitKey(100);
 }
 cvReleaseCapture(&capture);
 cvDestroyWindow("Video");
}

32

Offloading on soft (i.e. not used cores) and
HW accelerators

✴ offloading
✦ onto other cores and

accelerators

33

Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

 thr 1

dispatching

myDetect

myDenoise

 thr n

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Farm(Pipeline(myDetect,myDenoise))

acceleratorY

display

gathering

Changing the structure does not require re-writing business code (gray)

34

Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

myDetect

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Pipeline(myDetect,Map(myDenoise))

accelerator

Y

display

myDenoise
(CUDA)

Changing the structure does not require re-writing business code (gray)

34

Single design - many implementations

capture

myDetect

myDenoise

end?

unique thr

Sequential

Y

display

 thr 1

dispatching

myDetect

myDenoise

 thr n

myDetect

myDenoise

end?

capture

Offloading

 stream of independent frames main thr

Parallel - Farm(Pipeline(myDetect, Map(myDenoise)))

acceleratorY

display

gathering

myDenoise
(CUDA)

myDenoise
(CUDA)

Changing the structure does not require re-writing business code (gray)

34

FF multi-core vs FF hybrid

35

noise
FF 32 cores

Intel 4x8x2 2GHz
FF 8 cores (detect) +
Tesla C2050 (denoise)

Seq
Intel 4x8x2 2GHz

Lena 512x512Lena 512x512Lena 512x512Lena 512x512

10 1.8 s 1.9 s 32 s

50 6.5 s 2.3 s 162 s

90 10.9 s 2.8 s 290 s

Space 4096x4096Space 4096x4096Space 4096x4096Space 4096x4096

10 78 s 12 s 2093 s

50 373 s 46 s 10400 s

90 665 s 77 s 18571 s 271x
226x
174x

Demo

36

Conclusions

✴ Two-phase denoising
✦ Variational methods can be made fast and efficient

• Works up to 95% or noise, comparable to jpeg on 50% of noise

✦ CPU/GPGPUs/Hybrid

✦ Edge-preserving restoration works also for other kinds of noise

✴ GPGPUs
✦ Needs high-level, CUDA/OpenCL too close to the metal

✦ Well integrate with functional style and higher order patterns

✴ Image analysis is just an example of usage of FastFlow
✦ classification, mining, compressing, string-alignment, network inspection (also used in

nTop), and many more... See http://di.unito.it/fastflow

✦ MonteCarlo simulations

• precessed CMS@CERN channel H→ZZ→4l Higg’s boson for July 2012 claim

37

Thank you

38

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 20 40 60 80 100 120

PS
N

R

n. cycles

image: space, size: 2048x2048, noise: 90%

flat
border

std
cluster

Nondeterministic variants &
Convergence speed

✴ flat (used in CUDA version)
✴ use block halo, block size =1
✴ do independent
✴ deterministic - slow convergence
✴ easy CPU and GPU - can be linearized

✴ border
✴ use block halo
✴ do independent on tiles, do across within tiles
✴ nondeterministic - fast convergence
✴ easy on CPU and GPU - cannot be linearized

✴ std (used in multicore version)
✴ don’t use a block halo
✴ do independent on tiles, do across within tiles
✴ nondeterministic - fast convergence
✴ easy CPU and GPU - cannot be linearized

✴ cluster
✴ do independent on tiles, do across within tiles
✴ deterministic - fast convergence
✴ easy on CPU, difficult on GPU - can be linearized

39

