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Talk Outline

 Producer-Consumer queues
 Lock-Free vs Wait-Free
 Bounded SPSC queue
 Why lock freedom and why SPSC queues ?

 Unbounded List-based Lock-Free queue
 Fast Unbounded Lock-Free queue
 Performance measurements
 Conclusions 



  

Producer-Consumer queues

 Producer-Consumer queues are fundamental data 
structures in concurrent systems

 Widely used in many run-time supports and 
algorithms to implement:
 data/message channels
 synchronization mechanisms
 task scheduling policies

 No single queue implementation suitable/efficient for all 
situations



  

Producer-Consumer queues

 Queues can be classified depending on many 
factors, the most significant are: 
 Concurrency level: SPSC, SPMC,MCSP,MPMC
 Internal data structures: Array-based, List-based
 Size: Bounded, Unbounded
 Progress guarantees: No guarantee (blocking), 

Obstruction freedom, Lock freedom, Wait freedom
 We are interested in unbounded non-blocking Lock/Wait-

free SPSC queues, either array-based or list-based 



  

Blocking vs Non-Blocking

 Non-blocking: No thread is blocked waiting for 
other threads to complete some operations.

        no locks or critical sections may be used

 Progress guarantees: 

 Obstruction freedom (weakest)
 A thread, if executed in isolation, makes progress.

 Lock freedom
 With enough time, at least one thread makes progress 

 Wait freedom (strongest)
 A thread always completes its ops in a bounded number 

of steps



  

Expected performance

 What are the performance implications of the 
progress properties ?

 In the general case:
 For medium/coarse grain applications:   

 For fine grain applications:

 Stronger properties are harder to maintain

faster than faster than

Blocking                               Non-Blocking   faster than

Non-Blocking                       Blocking   faster than

Obstruction-Free                    Lock-Free                    Wait-Free



  

Bounded SPSC queues

 Lamport's ring buffer was the cornerstone    [Lamport'83]
 Original works under Sequential Consistency

 With few modifications it works also under weak ordered 
memory models  (P

1
C

1
-queue)            [Higham&Kavalsh'97]

 Combines control and data info using a special     value
 fastforward lock-free queue optimized Lamport's queue 

for multi-core                                   [Giacomoni at all.'08]

 It uses the same algorithm of the P
1
C

1
-queue

 Various other works (e.g. MCRingBuffer, LibertyQueue) 
focused on further or different optimizations of the 
bounded SPSC for multi-core systems  



  

Bounded SPSC queue

 We used the fastforwad queue (without the temporal 
sliping optimization) as a basic building block:
 Req: effects of a store op seen completed or not at all
 The queue carries memory pointers: 

 A Write-Memory-Barrier (WMB) is needed under WO
 The  special     value is NULL 



  

Bounded SPSC queue schema

 The head and tail indexes are mapped on different cache-
lines (data padding is added to fill up a cache-line) 



  

Progress guarantees of the SPSC queue

 Lamport's ring buffer is Wait-Free
 An ”extra” WMB operation is needed under weak 

memory ordering (WO) to ensure correctness 

 The fastforwad queue (i.e. the SPSC queue in our 
nomenclature) is Lock-Free and works under WO
 If thread termination and restart is not allowed during 

the program execution, then it is Wait-Free 



  

Bounded vs Unbounded SPSC queues

 Bounded SPSC queue is very simple, elegant and 
performs very well on multi-cores when the producer 
and the consumer work on different cache lines.  

 So, why do we need unbounded SPSC queues ? 
 May not be easy to determine the correct BUF_SIZE for 

the internal array
 Need to set it up for the worst case

 Bounded queues may introduce deadlock issues
 In case of complex process networks with cycles 

 They are more general than bounded queues
 But sometimes dangerous to use 

 Unbounded SPSC queues have been less investigated



  

Unbounded List-Based SPSC queue

 Starting from the well-known two-lock MPMC queue by 
Micheal and Scott (MS_2-lock)           [Michael&Scott'98] 
 A List-based unbounded SPSC queue is obtained simply 

removing the 2 locks
 MS_2-lock links dynamically allocated Node(s) containing 

pointer to user data  
 head and tail pointers initially point to a dummy Node

 Our version (called dSPSC) uses an internal cache of 
Nodes implemented with a SPSC queue to reduce 
memory allocation/deallocation
 The SPSC cache is used in the opposite direction w.r.t. 

the dSPSC queue, i.e. the dSPSC consumer is the 
producer of the SPSC cache.



  

dSPSC queue schema



  

Unbounded array-based SPSC queue

 Idea: using a ”pool” of SPSC queues 
 FIFO ordering is guaranteed by an internal dSPSC 

queue which contains pointers to in-use SPSC queues
 Advantages: using array-based SPSC queues 

increases overall cache locality

 As for the dSPSC, dynamic memory management has 
to be minimized

 The internal Pool leverages on a cache of empty 
SPSC queues 

 The unbounded queue has the same interface as the 
SPSC and dSPSC queues.



  

uSPSC queue schema



  

uSPSC queue algorithm

 At the beginning a single bounded 
SPSC queue is used

 Both P and C work on the same 
initial queue

 As soon as the queue fills up, the 
Pool provides a new (possibly 
recycled) SPSC queue to the 
producer 

 When the tail queue has been 
emptied, the Pool provides the 
consumer with the next SPSC 
queue that is in-use in the dSPSC 
queue

 The algorithm is independent of the 
underlying SPSC queue 
implementation used



  

Progress guarantee of the dSPSC and 
uSPSC queues

 Both queues dynamically allocate memory, if needed

 Depending on the memory allocator used, the two 
queues are:
 ”Almost” Lock-Free

 Lock-free only in the fast-path, when memory is neither 
allocated nor freed but recycled from the cache

 Lock-Free if a lock-free memory allocator is used for 
Node or SPSC allocation outside the fast-path

 Wait-Free if a wait-free memory allocator is used 
outside the fast-path, and no thread termination and 
restart is allowed.



  

Performance evaluations

 Test environment: 4 eight-core double context       
Xeon E7-4820 @2.0GHz, 18MB shared L3 cache
 L3 cache is shared among all eight cores
 L2 cache (256KB) is shared between the 2 contexts of 

the single core 

 2 kinds of tests:
 Latency of queue ops
 Scalability when many 

queues are used



  

Latency of push/pop ops

 In this test the producer is a bit faster than the consumer

Producer:
for(i=0;i<NUMTASK;++i) {
  long* p = 0x1234 + i;
  do ;  while(Q->push(p));
}
do; while(Q->push(EOS));

Consumer: 
do  { 
   Q.pop(task);
    If (task == EOS) end =true;
    else 
         If (p != (0x1234 + i)) error();
} while (! end );

queue_t Q(size);



  

Latency: cross-comparison



  

Latency with small buffer size

 What if the producer and the consumer work on the same 
cache-line ?

 Lots of cache invalidations 
due to false-sharing

 From 3 to 5 times slower
 This happens when the 

producer is (temporarly?) 
slower than the consumer

 There are several techniques which ”force” the producer and 
the consumer to work on separate cache-lines (temporal 
sliping, batch update of control variables, multi-push, etc.)

 Not easily usable, may require fine tuning or non-standard 
interface to avoid deadlock



  

Measuring scalability

 The benchmark consists in a ring of N threads exchanging 
msgs using unbounded queues as inter-thread channel

 The main thread produces K batches of 256 msgs
 In this test bounded queues can also be used but in general 

the stages may be unbalanced 

 msgs are just few bytes of dynamically allocated memory



  

Unbounded queues throughput

Settings:  
- dSPSC cache size 2K slots        
- uSPSC buffer size 2K slots, cache size 32 slots

 The dSPSC queue performs poorly without the internal cache 

 The uSPSC queue scales quite well (~ 250K msgs/s) eventually 
obtaining ~32x scalability



  

SPSC queues in FastFlow  

 Both the SPSC and the uSPSC queues are used as basic 
building blocks in the FastFlow parallel framework

 FastFlow provides a skeleton based parallel programming 
model on shared-cache multi-core

 Using the unbounded queue it implements the pipeline, 
farm and D&C skeletons (all of them may be nested).

 Many parallel applications have been developed using the 
FastFlow framework

 The low overhead of the SPSC queues results in good 
performance also for fine-grain parallel algorithms

 More info on FastFlow:

 http://mc-fastflow.sourceforge.net  



  

Conclusions  

 Unbounded SPSC queues have been studied

 A new lock-free implementation called dSPSC of the 
widely used two-lock MS-queue algorithm has been 
proposed 

 A novel unbounded array-based SPSC queue called 
uSPSC has been proposed and tested
 The uSPSC queues performs very well on shared-cache 

multi-core
 It is built in such a way that ”specialized” bounded SPSC 

queues can be used 



  

 

Thanks !
Any questions?

Queues implementation can be found within 
the FastFlow source code:

http://mc-fastflow.sourceforge.net/



  

uSPSC complete algorithm  
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