

An efficient Unbounded
Lock-Free Queue for Multi-Core Systems

Authors:

Marco Aldinucci1, Marco Danelutto2, Peter Kilpatrick3,

Massimiliano Meneghin4 and Massimo Torquati2

1 Computer Science Dept. - University of Turin – Italy

2 Computer Science Dept. - University of Pisa - Italy

3 Computer Science Dept. Queen's University Belfast – UK

4 IBM Dublin Research Lab, Ireland

Speaker:

 Massimo Torquati e-mail: torquati@di.unipi.it

Talk Outline

 Producer-Consumer queues
 Lock-Free vs Wait-Free
 Bounded SPSC queue
 Why lock freedom and why SPSC queues ?

 Unbounded List-based Lock-Free queue
 Fast Unbounded Lock-Free queue
 Performance measurements
 Conclusions

Producer-Consumer queues

 Producer-Consumer queues are fundamental data
structures in concurrent systems

 Widely used in many run-time supports and
algorithms to implement:
 data/message channels
 synchronization mechanisms
 task scheduling policies

 No single queue implementation suitable/efficient for all
situations

Producer-Consumer queues

 Queues can be classified depending on many
factors, the most significant are:
 Concurrency level: SPSC, SPMC,MCSP,MPMC
 Internal data structures: Array-based, List-based
 Size: Bounded, Unbounded
 Progress guarantees: No guarantee (blocking),

Obstruction freedom, Lock freedom, Wait freedom
 We are interested in unbounded non-blocking Lock/Wait-

free SPSC queues, either array-based or list-based

Blocking vs Non-Blocking

 Non-blocking: No thread is blocked waiting for
other threads to complete some operations.

 no locks or critical sections may be used

 Progress guarantees:

 Obstruction freedom (weakest)
 A thread, if executed in isolation, makes progress.

 Lock freedom
 With enough time, at least one thread makes progress

 Wait freedom (strongest)
 A thread always completes its ops in a bounded number

of steps

Expected performance

 What are the performance implications of the
progress properties ?

 In the general case:
 For medium/coarse grain applications:

 For fine grain applications:

 Stronger properties are harder to maintain

faster than faster than

Blocking Non-Blocking faster than

Non-Blocking Blocking faster than

Obstruction-Free Lock-Free Wait-Free

Bounded SPSC queues

 Lamport's ring buffer was the cornerstone [Lamport'83]
 Original works under Sequential Consistency

 With few modifications it works also under weak ordered
memory models (P

1
C

1
-queue) [Higham&Kavalsh'97]

 Combines control and data info using a special value
 fastforward lock-free queue optimized Lamport's queue

for multi-core [Giacomoni at all.'08]

 It uses the same algorithm of the P
1
C

1
-queue

 Various other works (e.g. MCRingBuffer, LibertyQueue)
focused on further or different optimizations of the
bounded SPSC for multi-core systems

Bounded SPSC queue

 We used the fastforwad queue (without the temporal
sliping optimization) as a basic building block:
 Req: effects of a store op seen completed or not at all
 The queue carries memory pointers:

 A Write-Memory-Barrier (WMB) is needed under WO
 The special value is NULL

Bounded SPSC queue schema

 The head and tail indexes are mapped on different cache-
lines (data padding is added to fill up a cache-line)

Progress guarantees of the SPSC queue

 Lamport's ring buffer is Wait-Free
 An ”extra” WMB operation is needed under weak

memory ordering (WO) to ensure correctness

 The fastforwad queue (i.e. the SPSC queue in our
nomenclature) is Lock-Free and works under WO
 If thread termination and restart is not allowed during

the program execution, then it is Wait-Free

Bounded vs Unbounded SPSC queues

 Bounded SPSC queue is very simple, elegant and
performs very well on multi-cores when the producer
and the consumer work on different cache lines.

 So, why do we need unbounded SPSC queues ?
 May not be easy to determine the correct BUF_SIZE for

the internal array
 Need to set it up for the worst case

 Bounded queues may introduce deadlock issues
 In case of complex process networks with cycles

 They are more general than bounded queues
 But sometimes dangerous to use

 Unbounded SPSC queues have been less investigated

Unbounded List-Based SPSC queue

 Starting from the well-known two-lock MPMC queue by
Micheal and Scott (MS_2-lock) [Michael&Scott'98]
 A List-based unbounded SPSC queue is obtained simply

removing the 2 locks
 MS_2-lock links dynamically allocated Node(s) containing

pointer to user data
 head and tail pointers initially point to a dummy Node

 Our version (called dSPSC) uses an internal cache of
Nodes implemented with a SPSC queue to reduce
memory allocation/deallocation
 The SPSC cache is used in the opposite direction w.r.t.

the dSPSC queue, i.e. the dSPSC consumer is the
producer of the SPSC cache.

dSPSC queue schema

Unbounded array-based SPSC queue

 Idea: using a ”pool” of SPSC queues
 FIFO ordering is guaranteed by an internal dSPSC

queue which contains pointers to in-use SPSC queues
 Advantages: using array-based SPSC queues

increases overall cache locality

 As for the dSPSC, dynamic memory management has
to be minimized

 The internal Pool leverages on a cache of empty
SPSC queues

 The unbounded queue has the same interface as the
SPSC and dSPSC queues.

uSPSC queue schema

uSPSC queue algorithm

 At the beginning a single bounded
SPSC queue is used

 Both P and C work on the same
initial queue

 As soon as the queue fills up, the
Pool provides a new (possibly
recycled) SPSC queue to the
producer

 When the tail queue has been
emptied, the Pool provides the
consumer with the next SPSC
queue that is in-use in the dSPSC
queue

 The algorithm is independent of the
underlying SPSC queue
implementation used

Progress guarantee of the dSPSC and
uSPSC queues

 Both queues dynamically allocate memory, if needed

 Depending on the memory allocator used, the two
queues are:
 ”Almost” Lock-Free

 Lock-free only in the fast-path, when memory is neither
allocated nor freed but recycled from the cache

 Lock-Free if a lock-free memory allocator is used for
Node or SPSC allocation outside the fast-path

 Wait-Free if a wait-free memory allocator is used
outside the fast-path, and no thread termination and
restart is allowed.

Performance evaluations

 Test environment: 4 eight-core double context
Xeon E7-4820 @2.0GHz, 18MB shared L3 cache
 L3 cache is shared among all eight cores
 L2 cache (256KB) is shared between the 2 contexts of

the single core

 2 kinds of tests:
 Latency of queue ops
 Scalability when many

queues are used

Latency of push/pop ops

 In this test the producer is a bit faster than the consumer

Producer:
for(i=0;i<NUMTASK;++i) {
 long* p = 0x1234 + i;
 do ; while(Q->push(p));
}
do; while(Q->push(EOS));

Consumer:
do {
 Q.pop(task);
 If (task == EOS) end =true;
 else
 If (p != (0x1234 + i)) error();
} while (! end);

queue_t Q(size);

Latency: cross-comparison

Latency with small buffer size

 What if the producer and the consumer work on the same
cache-line ?

 Lots of cache invalidations
due to false-sharing

 From 3 to 5 times slower
 This happens when the

producer is (temporarly?)
slower than the consumer

 There are several techniques which ”force” the producer and
the consumer to work on separate cache-lines (temporal
sliping, batch update of control variables, multi-push, etc.)

 Not easily usable, may require fine tuning or non-standard
interface to avoid deadlock

Measuring scalability

 The benchmark consists in a ring of N threads exchanging
msgs using unbounded queues as inter-thread channel

 The main thread produces K batches of 256 msgs
 In this test bounded queues can also be used but in general

the stages may be unbalanced

 msgs are just few bytes of dynamically allocated memory

Unbounded queues throughput

Settings:
- dSPSC cache size 2K slots
- uSPSC buffer size 2K slots, cache size 32 slots

 The dSPSC queue performs poorly without the internal cache

 The uSPSC queue scales quite well (~ 250K msgs/s) eventually
obtaining ~32x scalability

SPSC queues in FastFlow

 Both the SPSC and the uSPSC queues are used as basic
building blocks in the FastFlow parallel framework

 FastFlow provides a skeleton based parallel programming
model on shared-cache multi-core

 Using the unbounded queue it implements the pipeline,
farm and D&C skeletons (all of them may be nested).

 Many parallel applications have been developed using the
FastFlow framework

 The low overhead of the SPSC queues results in good
performance also for fine-grain parallel algorithms

 More info on FastFlow:

 http://mc-fastflow.sourceforge.net

Conclusions

 Unbounded SPSC queues have been studied

 A new lock-free implementation called dSPSC of the
widely used two-lock MS-queue algorithm has been
proposed

 A novel unbounded array-based SPSC queue called
uSPSC has been proposed and tested
 The uSPSC queues performs very well on shared-cache

multi-core
 It is built in such a way that ”specialized” bounded SPSC

queues can be used

Thanks !
Any questions?

Queues implementation can be found within
the FastFlow source code:

http://mc-fastflow.sourceforge.net/

uSPSC complete algorithm

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27

