
Targeting distributed systems in
FastFlow

Authors of the work:

Marco Aldinucci

Computer Science Dept. - University of Turin - Italy

Sonia Campa, Marco Danelutto and Massimo Torquati

Computer Science Dept. - University of Pisa - Italy

Peter Kilpatrick

Queen's University Belfast - UK

Speaker:

 Massimo Torquati e-mail: torquati@di.unipi.it

Talk outline

 The FastFlow framework: basic concepts
 From single to many multi-core workstations

 Two-tier parallel model
 Definition of the dnode concept in FastFlow

 Implementation of communication patterns
 ZeroMQ as distributed transport layer
 Marshalling/unmarshalling of messages

 Benchmarks and simple application results
 Conclusions and Future Work

Talk outline

 The FastFlow framework: basic concepts
 From single to many multi-core workstations

 Two-tier parallel model
 Definition of the dnode concept in FastFlow

 Implementation of communication patterns
 ZeroMQ as distributed transport layer
 Marshalling/unmarshalling of messages

 Benchmarks and simple application results
 Conclusions and Future Work

FastFlow parallel programming
framework

 Originally designed for
shared-cache multi-core

 Fine-grain parallel
computations

 Skeleton-based parallel
programming model

FastFlow basic concepts
 FastFlow implementation

 based on the concept of node (ff_node class)

 A node is an abstraction with an input and an
output SPSC queue.

 Queues can be bounded or unbounded.
 Nodes are connected one each other by queues.

FastFlow ff_node
class ff_node { // class sketch

protected:

 virtuall bool push(void* data) {

 return qout->push(data);

 }
 virtual bool pop(void** data) {

 return qin->pop(data);

 }

public:
 virtual void* svc(void* task)=0;

 virual int svc_init() { return 0;}

 virtual void svc_end() {}

private:

 SPSC* qin;

 SPSC* qout;} ;

 At lower level, FastFlow offers
a Process Network (-like)
MoC where channels carry
shared memory pointers

 Business-logic code
encapsulated in the svc
method

 svn_init and svc_end used
for initialization and
termination

FastFlow ff_node
 A sequential node is eventually (at run-time) a

POSIX thread
 There are 2 “special” nodes which provide SPMC

and MCSP queues using arbiter threads for
scheduling and gathering policy control

Basic skeletons

 At higher level, FastFlow
offers a pipeline and farm
skeletons

 Basic skeletons can be
composed

 There are some limitations
on the possible nesting of
nodes when cycles are
present

Talk outline

 The FastFlow framework: basic concepts
 From single to many multi-core workstations

 Two-tier parallel model
 Definition of the dnode concept in FastFlow

 Implementation of communication patterns
 ZeroMQ as distributed transport layer
 Marshalling/unmarshalling of messages

 Benchmarks and simple application results
 Conclusions and Future Work

Extending FastFlow
 Currently, a FastFlow parallel application uses only

one single multi-core workstation
 We are extending FastFlow to target GPGPUs and

general-purpose HW accelerators (TilePro64)

 We need to scale to hundreds/thousands of cores

 we have to use many multi-core workstations

 The FastFlow streaming network model can be
easily extended to work outside the single
workstation

Two tier parallel model
 We propose a two-tier model:

– Lower-layer: supports file grain parallelism on a
single multi/many-core workstation leveraging
GPGPUs and HW accelerators

– Upper-layer: supports structured coordination of
multiple workstations for medium/coarse
parallel activities

 The lower-layer is basically the FastFlow
framework extended with suitable mechanisms

From node to dnode
 A dnode (class ff_dnode) is a node (i.e. extends

the ff_node class) with an external
communication channel:

 The external channels are specialized to be
input or output channels (not both)

From node to dnode (2)
 Idea:only the edge-nodes of the FastFlow

skeleton network are able to “talk to” the outside
word.

Above we have 2 FastFlow applications whose edge-
node are connected using an unicast channel.

FastFlow ff_dnode
template <class CommImpl>

class ff_dnode: public ff_node {

protected:

 virtuall bool push(void* data) {

 …. com->push(data);
 }

 virtual bool pop(void** data) {

 …. com->pop(data);

 }
public:

 int init(...) { ... return com.init(...); }

 int run() { return ff_node::run(); }

 int wait() { return ff_node::wait();}

private:

 CommImpl com;};

 The ff_dnode offers the
same interface as the
ff_node

 In addition it encapsulates
the “external channel”
whose type is passed as
template parameter

 The init method initializes
the communication end-
points

Communication patterns

 Possible communication
patterns among dnode(s)
can be:

 Unicast
 Broadcast
 Scatter
 OnDemand
 fromAll (all-Gather)
 fromAny

How to define a dnode
This is the
communication pattern
we want to use

Here we specify if we are
the SENDER or the
RECEIVER dnode.

A possible application scenario

 Both SPMD and MPMD programming models supported.

Talk outline

 The FastFlow framework: basic concepts
 From single to many multi-core workstations

 Two-tier parallel model
 Definition of the dnode concept in FastFlow

 Implementation of communication patterns
 ZeroMQ as distributed transport layer
 Marshalling/unmarshalling of messages

 Benchmarks and simple application results
 Conclusions and Future Work

Communication pattern
implementation

 The current version uses ZeroMQ to implement
external channes

 ZeroMQ uses TCP/IP
 Why ZeroMQ?

 It is easy to use.
 Runs on most OSs and supports many languages
 It is efficient enough
 Offers an asynchronous communication model
 Allows implementation zero-copy multi-part sends

Marshalling/Unmarshalling of
messages

 Consider the case when 2 or more objects have to
be sent as a single message

 If the 2 objects are non-contiguous in memory we
have to memcpy one of the two

 It can be costly in term of performance

 A classical solution to avoid coping is to use
POSIX readv/writev (scatter/gather) primitives, i.e.
multi-part messages

Marshalling/Unmarshalling of
messages

 All communication patterns implemented supports zero-
copy multi-part messages

 The dnode provides the programmer with specific
methods for managing multi-part messages:

 Sender side: 1 method (prepare) called before data is
being sent.

 Receiver side: 2 methods (prepare and unmarshalling)
 the 1st called before receiving data, used to give to the

run-time the receiving buffers
 the 2nd one called after all data have been received, used

to reorganise data frames.

Marshalling/Unmarshalling:
usage example

 prepare creates 2 iovec for
the 2 parts of memory
pointed by ptr and str. Two
msgs are sent.

 unmarshalling (re-)arranges
the received msgs to have a
single pointer to the
mysting_t object

struct mystring_t {
 int length;
 char* str;
}; mystring_t* ptr;

Object definition:

Memory layout:

12

ptr

str

Hello world!

S
E
N
D
E
R

R
E
C
E
I
V
E
R

Talk outline

 The FastFlow framework: basic concepts
 From single to many multi-core workstations

 Two-tier parallel model
 Definition of the dnode concept in FastFlow

 ZeroMQ as distributed transport layer
 Implementation of communication patterns
 Marshaling/unmarshaling of messages

 Benchmarks and simple application results
 Conclusions and Future Work

Experiments configuration
 2 workstations each with 2CPUs Sandy-Bridge E5-2650

@2.0GHz, running Linux x86_64

 16-cores per Host, 20MB L3 shared cache, 32GB RAM

 1Gbit-Ethernet and Infiniband Connectx-3 card (40Gbit/s) - no
network switch between

Experiments: Unicast Latency

Latency test:
● Node0 generates 8-bytes
msgs, one at a time.
● Node1 sends the msg to
Node2, Node2 to Node3 and
Node3 back to Node0
● As soon as Node0 receives
one input msg, it generates
another one up to N msgs
● Min.Latency=
 Node0 Time / (2*N)

msg size 1Gbit Ethernet Infiniband
IPoIB

8-Bytes 69 us 27 us

Minimum Latency

Experiments: Unicast Bandwidth

Bandwidth test:
● Node0 sends the same msg of size
bytes N times.
● Node1 gets one msg at a time and
free memory space
● Max.Bwd (Gb/s)=
 N / (Time Node1(s) * size * 8M)

msg size 1Gbit Ethernet Infiniband
IPoIB

FastFlow iperf 2.0.5

1K 0.50 Gb/s 5.0 Gb/s 0.6 Gb/s

4K 0.93 Gb/s 5.1 Gb/s 4.8 Gb/s

1M 0.95 Gb/s 14.7 Gb/s 17.6 Gb/s

Maximum Bandwidth

Experiments: Benchmark

Single host schemasTwo host schema
 Square matrix computation. Input stream of 8192 matrices.

 Two cases tested: 256x256 and 512x512 matrix sizes.

 Parallel schema as in the figures. On the left using 2 hosts, on
the right using just 1 hosts.

Experiments: Benchmark

Mat size FF dFF-1 dFF-2-Eth dFF-2-Inf

256x256 13.6X 17.6X 20.8X 23.8X

512x512 16X 20.6X 39.2X 50.9X

Max Speedup

Experiments: Image application
 Stream of 256 GIF images. We have to apply 2 image filters to

each image (blur and emboss).

 Two cases tested: small size images ~ 256KB and coarser size
images ~1.7MB.

 Parallel schema as in the figures below. On the left using 2
hosts, on the right using just 1 hosts.

blur filter emboss filter
blur & emboss filters

Experiments: Image application

Image
size

FF dFF-2-Eth dFF-2-Inf

small 11.5X 8X 19.6X

medium 12X 8.5X 28.3X

Max Speedup

NOTE: Disk transfer time is not considered.

Talk outline

 The FastFlow framework: basic concepts
 From single to many multi-core workstations

 Two-tier parallel model
 Definition of the dnode concept in FastFlow

 ZeroMQ as distributed transport layer
 Implementation of communication patterns
 Marshaling/unmarshaling of messages

 Benchmarks and simple application results
 Conclusions and Future Work

Conclusions & Future Works
 We extended the existing FastFlow programming

framerork for targeting distributed systems
 It is easy enough to add multiple distributed nodes

in a FastFlow application

 Preliminar results are fairly good
 We have to test it on bigger clusters !

 We are currently working at the higher layer of our
two-tier model in order to provide algorithm
skeletons implemented on top of the FastFlow
framework.

Thanks !

Any questions?
Source code available within the SourceForge svn

FastFlow web-site:

http://mc-fastflow.sourceforge.net/

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33

