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FastFlow parallel programming 
framework

 Originally designed for 
shared-cache multi-core

 Fine-grain parallel 
computations

 Skeleton-based parallel 
programming model 



FastFlow basic concepts
 FastFlow implementation 

 based on the concept of node (ff_node class)

 A node is an abstraction with an input and an 
output SPSC queue. 

 Queues can be bounded or unbounded. 
 Nodes are connected one each other by queues.



FastFlow ff_node
class ff_node {   // class sketch

protected:

   virtuall bool push(void* data) { 

         return qout->push(data);

   }
   virtual bool pop(void** data) {

         return qin->pop(data);

   }

public:
   virtual void* svc(void* task)=0;

   virual int svc_init() { return 0;}

   virtual void svc_end() {}

private:

   SPSC* qin;

   SPSC* qout;} ;

 At lower level, FastFlow offers 
a Process Network (-like) 
MoC where channels carry 
shared memory pointers

 Business-logic code  
encapsulated in the svc 
method

 svn_init and svc_end used 
for initialization and 
termination



FastFlow ff_node
 A sequential node is eventually (at run-time) a 

POSIX thread
 There are 2 “special” nodes which provide SPMC 

and MCSP queues using arbiter threads for 
scheduling and gathering policy control



Basic skeletons

 At higher level, FastFlow 
offers a pipeline and farm 
skeletons

 Basic skeletons can be 
composed

 There are some limitations 
on the possible nesting of 
nodes when cycles are 
present
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Extending FastFlow
 Currently, a FastFlow parallel application uses only 

one single multi-core workstation
 We are extending FastFlow to target GPGPUs and 

general-purpose HW accelerators (TilePro64)

 We need to scale to hundreds/thousands of cores

  we have to use many multi-core workstations

 The FastFlow streaming network model can be 
easily extended to work outside the single 
workstation



Two tier parallel model
 We propose a two-tier model:

– Lower-layer: supports file grain parallelism on a 
single multi/many-core workstation leveraging 
GPGPUs and HW accelerators

– Upper-layer: supports structured coordination of 
multiple workstations for medium/coarse 
parallel activities

 The lower-layer is basically the FastFlow 
framework extended with suitable mechanisms



From node to dnode
 A dnode (class ff_dnode) is a node (i.e. extends 

the ff_node class) with an external 
communication channel:

 The external channels are specialized to be 
input or output channels (not both)



From node to dnode (2)
 Idea:only the edge-nodes of the FastFlow 

skeleton network are able to “talk to” the outside 
word.

Above we have 2 FastFlow applications whose edge-
node are connected using an unicast channel.



FastFlow ff_dnode
template <class CommImpl>

class ff_dnode: public ff_node { 

protected:

   virtuall bool push(void* data) { 

         …. com->push(data);
   }

   virtual bool pop(void** data) {

         …. com->pop(data);

   }
public:

   int init(...) { ... return com.init(...); }

   int run() { return ff_node::run(); }

   int wait() { return ff_node::wait();}

private:

   CommImpl com;};

 The ff_dnode offers the 
same interface as the 
ff_node

 In addition it encapsulates 
the “external channel” 
whose type is passed as 
template parameter

 The init method initializes 
the communication end-
points



Communication patterns

 Possible communication 
patterns among dnode(s)     
can be:

 Unicast
 Broadcast
 Scatter 
 OnDemand
 fromAll (all-Gather)
 fromAny



How to define a dnode
This is the 
communication pattern 
we want to use

Here we specify if we are 
the SENDER or the 
RECEIVER dnode.



A possible application scenario

 Both SPMD and MPMD programming models supported.
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Communication pattern 
implementation

 The current version uses ZeroMQ to implement 
external channes

 ZeroMQ uses TCP/IP
 Why ZeroMQ?

 It is easy to use.  
 Runs on most OSs and supports many languages
 It is efficient enough 
 Offers an asynchronous communication model
 Allows implementation zero-copy multi-part sends



Marshalling/Unmarshalling of 
messages

 Consider the case when 2 or more objects have to 
be sent as a single message

 If the 2 objects are non-contiguous in memory we 
have to memcpy one of the two

 It can be costly in term of performance 

 A classical solution to avoid coping is to use 
POSIX readv/writev (scatter/gather) primitives, i.e. 
multi-part messages



Marshalling/Unmarshalling of 
messages

 All communication patterns implemented supports zero-
copy multi-part messages

 The dnode provides the programmer with specific 
methods for managing multi-part messages: 

 Sender side: 1 method (prepare) called before data is 
being sent.

 Receiver side: 2 methods (prepare and unmarshalling) 
 the 1st called before receiving data, used to give to the 

run-time the receiving buffers
  the 2nd one called after all data have been received, used 

to reorganise data frames. 



Marshalling/Unmarshalling: 
usage example

 prepare creates 2 iovec for 
the 2 parts of memory 
pointed by ptr and str. Two 
msgs are sent.

 unmarshalling (re-)arranges 
the received msgs to have a 
single pointer to the 
mysting_t object

struct mystring_t {
  int      length;
  char* str;
}; mystring_t* ptr; 

Object definition:

Memory layout:

12 

ptr

str 

Hello world! 
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Experiments configuration
 2 workstations each with 2CPUs Sandy-Bridge E5-2650 

@2.0GHz, running Linux x86_64

 16-cores per Host, 20MB L3 shared cache, 32GB RAM

 1Gbit-Ethernet and Infiniband Connectx-3 card (40Gbit/s) - no 
network switch between



Experiments: Unicast Latency

Latency test:
● Node0 generates 8-bytes 
msgs, one at a time.
● Node1 sends the msg to 
Node2, Node2 to Node3 and 
Node3 back to Node0
● As soon as Node0 receives 
one input msg, it generates 
another one up to N msgs
● Min.Latency= 
               Node0 Time / (2*N)

msg size 1Gbit Ethernet Infiniband 
IPoIB

8-Bytes 69 us 27 us

Minimum Latency



Experiments: Unicast Bandwidth

Bandwidth test:
● Node0 sends the same msg of size 
bytes N times. 
● Node1 gets one msg at a time and 
free memory space 
● Max.Bwd (Gb/s)= 
         N / (Time Node1(s) * size * 8M)

msg size 1Gbit Ethernet Infiniband 
IPoIB

FastFlow iperf 2.0.5

1K 0.50 Gb/s 5.0 Gb/s 0.6 Gb/s

4K 0.93 Gb/s 5.1 Gb/s 4.8 Gb/s

1M 0.95 Gb/s 14.7 Gb/s 17.6 Gb/s

Maximum Bandwidth



Experiments: Benchmark

Single host schemasTwo host schema
 Square matrix computation. Input stream of 8192 matrices. 

 Two cases tested: 256x256 and 512x512 matrix sizes.

 Parallel schema as in the figures. On the left using 2 hosts, on 
the right using just 1 hosts.



Experiments: Benchmark

Mat size FF dFF-1 dFF-2-Eth dFF-2-Inf

256x256 13.6X 17.6X 20.8X 23.8X

512x512 16X 20.6X 39.2X 50.9X

Max Speedup



Experiments: Image application
 Stream of 256 GIF images. We have to apply 2 image filters to 

each image (blur and emboss). 

 Two cases tested: small size images ~ 256KB and coarser size 
images ~1.7MB.

 Parallel schema as in the figures below. On the left using 2 
hosts, on the right using just 1 hosts.

blur filter emboss filter
blur & emboss filters



Experiments: Image application

Image 
size

FF dFF-2-Eth dFF-2-Inf

small 11.5X 8X 19.6X

medium 12X 8.5X 28.3X

Max Speedup

NOTE: Disk transfer time is not considered.
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Conclusions & Future Works
 We extended the existing FastFlow programming 

framerork for targeting distributed systems
 It is easy enough to add multiple distributed nodes 

in a FastFlow application  

 Preliminar results are fairly good
 We have to test it on bigger clusters !

 We are currently working at the higher layer of our 
two-tier model in order to provide algorithm 
skeletons implemented on top of the FastFlow 
framework.



Thanks ! 

Any questions?
Source code available within the SourceForge svn

FastFlow web-site:

http://mc-fastflow.sourceforge.net/
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