Do
S -

g T
9:1 "." :?. § ‘:..
- N
o T

DL

UNIVERSITA DEGLI STUDI
DI TORINO

E——--—

SEVENTH FRAMEWORK
PROGRAMME

International Summer School in Parallel Patterns

June 10,2014
Dublin, Ireland

FastFlow: high-level programming patterns
with non-blocking lock-free run-time support

Marco Aldinucci

Parallel programming models group
University of Torino

[taly

email: aldinuc@di.unito.it

mailto:aldinuc@di.unito.it

Outline

* Concurrency and multi-core, the theoretical
background

4+ a personal perspective

* FastFlow

+ A programming model (and a library) for multicore (& manycore)

* Code examples

* Discussion

Algorithmic skeletons and parallel patterns
at UniPl and UniTO

MPP

OCamlP3L
2L - Macro

_.%Data Flow

| Autonomic

Concurrency and multi-core
theoretical background: a personal
perspective

Use case:
Parallel stochastic simulations for system biology

/2 \
main pipeline
T T simulation pipeline | C analysis pipeline
\ e \
|
raw | filtered
simulation simulation ——
results ! results display of

alignment of
trajectories

Graphical

User
@ Interface

generation of
simulation tasks

¥ generation of
sliding windows

of trajectories

I Lo results

e e ———————

- ’
simulation engine
Table 2 - Performance (Intel 32 core platform) task size
Model Single trajectory information Overall data (20 sim eng, 3 stat eng)

N. samples Avg sim step Sample time Inter-arrival time Throughput Output size

Neurospora 10* 7.80 us 517.24 us 25.86 us 11.87 MB/s 36.62 MB
Neurospora 10° 8.37 us 55.51 us 2.78 us 1198 MB/s 366.21 MB
Neurospora 10° 75.63 us 4.65 us 232.68 ns | 201.63 MB/s 3.58 GB
EColi 10° 173.64 us 0.58 us 28.81 ns | 257.66 MB/s 4.47 GB

Lotka-Volterra 106 22.86 us 0.69 us 34.68 ns] 147.11 MB/s 2.68 GB

« M.Aldinucci et al. Parallel stochastic systems biology in the cloud. Briefings in Bioinformatics, 2013
* M.Aldinucci et al. On designing multicore-aware simulators for systems biology endowed with on-line statistics. BioMed Research International, 2014

W MOVAX 0FTo e 8700F MOVAX, 0F 79 S 700F MOVAX. 0F 79 ey M 9 SHH MOVAX,0F79 o
. " » x 'A E B ")
?)

biology

Simulation of transcriptional regulation in Neurospora

Circatvan Cledh in Newrospevo

Parallel stochastic simulations for system s ==,

o
Ll
1L a f N\ oL\

480 trajectories —*—

‘ideal ——
- 77 240 trajectories ——<—

1200 trajectories —=—

5 10 15 20 25 30
n. simulation engines (sim eng)

M. Drocco. Parallel stochastic simulators in systems biology: the evolution of the species. Master’s thesis, University of Torino, Italy, 201 3.

M.Aldinucci et al. On parallelizing on-line statistics for stochastic biological simulations. Euro-Par 201 | Workshops. Springer.

2ris FDIXTXX et L e
29,9991 guestile
FITIME uaiile |
e -
30
Tee. - ’ \
§ sl 9
3 | UINIL ‘ 25
: Md | |
= 1w - ," , iy L ,
g e B - J | I A l ‘| ' i J ' ' ' l
l 1. - - 20
-
LB -
2 15
3
i
>
—s 10
;
: 5
- -
. ’ 4 L * in
tine
* M.Aldinucci et al. On designing multicore-aware simulators for biological systems. PDP 201 I. |[EEE.

M.Aldinucci et al. Exercising high-level parallel programming on streams: a systems biology use case. ICDCS 2014. IEEE.

Heterogenous platforms:
Multicores, accelerators, FPGA, PGAS ...

* Multicore

* E.g. Intel SandyBridge, AMD Opteron
* cache-coherent

* 10 or more core per socket (20 contexts)
* cc-NUMA (as matter of a fact)

* NVidia/AMD GPGPU

TS

* S|MD, NO global SyﬂCh m:,';:g E DroCesSOr | aff— OrOCESSOr : Interface
- : - -
* performance only with proper and not automatic memory

hierarchy management

* Intel MIC CPU/GPGPU . >
Memor . . M o
* ring-based interconnection, variable coherency nmi'f'f'é’oi.z | prosesser gl promssar | 4 Interface
* NUMA lT ‘f
* FPGAS _ _

* general purpose cores

Legend:
* specialised cores t t i <—> Bi.directonal bus
soeee -f—— Unidrectional link
* local and NUMA shared-memory (via PCl express) o o
* PGAS
bl) r

* Partitioned Global Address Space
* cluster of multicores with (very) NUMA address space

Multicore, the simplest ...

* From programming/tuning viewpoint, the simplest is
already too complex ...

+ Exploit cache coherence

® Memory fences are expensive, increasing core count will make it worse

+ Fine-grained parallelism is hard to achieve

® |/O bound problems, High-throughput, Streaming, Irregular DP problems

® Automatic and assisted parallelisation solves uniform&easy cases

* SIMD/GPGPU worsen the scenario

+ Atomic ops in memory (i.e. fences) are still needec

+ Not everything can be described with do-independent (a.k.a. map)

Incoherence Coherence

Subplot
(on programming models)

* Shared-memory access In multiprocessor platforms

Source Destination

Load 7 « [Glob. Addr.] 1) Initiate memory access
. ' 2) Address translation

)
)
Read request L\-\
| 3) Request transaction
)
)

Read request

wait "Memory access | 4) Remote memory access

Read response 5) Reply transaction

Read response

6) Complete memory access

Figure 3.1: Shared address space abstraction:two-way request-response protocol.

T — N

Coherence & Consistency

@B ier //(Cache Conerence

» Deal with multiple replicas of the same location in different caches

. write(A,3)
o Memory COnSlStency Thread 1 - co— e e see s anee e eaneeenes >
write(A,1) read(A,?)
Thread 2 ————————...c . —— e >

« Operations in memory take time and are “filtered” by caches

* Deal with the ordering in which writes and reads at different locations take effect in
memory (issued by erther the same or different processors/cores)

* [hese two phenomena mingle together ...

Sequential Consistency
(Lamport 79)

(a) (0) (o) -+ (n

Processors issuing
memory relerences
as per pregram order
The "switch" is randomly
sel after each memory
reference
o

* Writes and reads are atomic

BllEach thread, they are executed In the program Cfces

17

Should not be confused with "

* Dynamic scheduling or out-of-order scheduling means that
instructions are fetched and decoded in program order as
presented by the compiler; but they are executed by the functional
units in the order In which the operands become available at run
time. Examples: scoreboarding or Tomasulo’s algorithm.

» Speculative execution allows the processor to look at and
schedule for execution Instructions that are not necessarily going
to be useful to the program’s execution. Instruction after the
speculation point (e.g. branch) continue to be decoded, issued and
executed, but these are not allowed to commit their values until all
prior speculation have been resolved.

* Out-of-order execution does not mean that the results of
instructions is made visible out-of-order at memory system level.

HVV consistency rationale

' Sequential Consistency

relax W—= R

write to read reorder

Total Store Ordering
Processor Consistency

{_

stnictness of ordering dropping

relax W— W

j

{write to read-write reorder

|

relax all Weak Ordering

Relaxed Memory Ordering
< Release Consistency
Entry Consistency

Scope Consistency

N

< Partial Store Ordering

L

S

all program orders

N
-

R — EE——

Fffect of assignment in memory: -

Sequential Total Partial Weak Release
Consistency Store Order Store Order Ordering Consistency
= A = A = A = A = A
l i
B = B = B = B = B =
l l l
lock (8) lock (8) lock (S) lock (8) lock (S)
[[
' i l l
C = C = C = C = C =
i J i
=D =D g= D =D = D
¢ N | | |
unlock (8) unlock (8) unlock(S) unlock (8S) unlock (S)
| i | l
E = E = E = E = E =
F = F = F = F = F =

» Effect In memory does not necessarily follow the order they are
Issued

* There not necessarily exist a total order across different processors

155

Mem Consistency: examples

« Current Processors:

» x86: Total Store Order (at least)

* Arm, PowerPC:Weak Ordering

* Alpha: Release Consistency

* Any Sequential Consistency?
- No

* [tis not efficient

Relaxed consistency ...

A=B=0
Pi P A=B=0, B=1, A==0, A=1 , B==@ (TRUE, FALSE)
: : A=B=0, B=1, A=1 , A—=0, B—0 ' GCAISEISEARCEy
write(B,1) write(A,1) A—B=0Q, B=1, A=1 , B==0, A—0 (FAISE SFARH)
if (A==0) ... if (B==0Q) ... A=B=0, A-1, B==0, B=1 , A==0 (FALSE, TRUE)
A=B=0, A=1, B=1 , A==0, B==0 (FALSE, FALSE)
A=B=0, A=1, B=1 , B==0, A==0 (FALSE, FALSE)

|deally NO, under Sequential Consistency NO

Can both ifs be

e L0 o TRUE Under weaker models, YES

Memory Consistency: SO

int A, *B:; Pl Pj
write(B,NULL) write(B,NULL)
write(A,1) write(A,R)
write(B,8cA)
if (B!=NULL)
PRINT read(A)

* Which is the printed value!

« Under Sequential Consistency |, under Total Store Order | or no print

» Under more relaxed models, either | or 2 or no print

Again on atomic operations

* In concurrent programming, an operation (or set of
operations) Is atomic If it appears to the rest of the

system to occur instantaneously.

-« Atomicrity Is a guarantee of isolation from concurrent processes.

- Additionally, atomic operations commonly have a succeed-or-fail definition, they either
successfully change the state of the system, or have no apparent effect.

 Atomic operation really does not actually occur
instantaneously. The system behaves as If each
operation occurred instantly, separated by pauses.

Linearizability

» Linearizability [Herlihy 8/] is more restrictive w.rt.
atomic operation (cannot be interrupted), which are
usually vague about when an operation Is considered to
begin and end

+ Atomicrity of sequences are usually enforced via mutexes

20

Linearizability

» A history Is a sequence of invocations and responses
made of an object by a set of threads. Each invocation
of a function will have a subsequent response

* A sequential history is one in which all invocations have
immediate responses
* A history Is serializable it

» Its Invocations and responses can be reordered to yield a sequential history

- that sequential history is correct according to the sequential definition of the object

* A history Is linearizable It serializable and

* If a response preceded an invocation in the original history, it must still precede it in
the sequential reordering

2|

http://en.wikipedia.org/wiki/Thread_(computer_science)

Serialization & Linearization

A: w» |ock B e
+ |ock outcome +— |ock outcome
- A w |ock B w» |ock A+ lock falled | B&locksleEess
| B w» |ock B IO el slicGeSS A = |ock A —lock failed
2 A w |ock A+ lock falled B w» |ock B «lock sliceess

2. Not a valid history. A should have get the lock
|.Valid history. Also a linearization.

An object (as opposed to a history) is linearizable it
all valid histories of its use can be linearized.

Vuch hardgr to prove!

Serialization & Linearization (example) -

Assume B inrtially holds the lock
A = [ock A+lock ok | B w» unlock | B unlock ok | A w unlock |A+unlock ok

Not a valid history
There 1s a point In which A and B hold the lock
Cannot be linearized

B w unlock |B—unlock ok| A w |ock A+lock ok | A = unlock |A<unlockcols

VWhen relaxing ordering between invocation and responses
't can be reordered to a valid history
(it I1s serializable)

Serialization & Linearization (example) -

response Invocation

\ \Assume B inrtially holds the lock

A = |ock A+—lock ok | B w unlock | B unlock ok I A w» unlock |A+unlock ok
N

ot a valid history
hich A and B hold the lock
Inearized

There
Canlie

4

K C Y
B w unlock |B—unlock ok| A w |ock A+lock ok | A = unlock |A<unlockcols

VWhen relaxing ordering between invocation and responses
't can be reordered to a valid history
(1t I1s serjalizable)

Linearizability (alternative def)

* [he definition of linearizability is equivalent to the
following:

» All function calls have a linearization point at some instant between their invocation
and their response

» All functions appear to occur instantly at their linearization point, behaving as specified
by the sequential definition

i

Linearizability (alternative def) ‘.

* [his alternative Is usually much easier to prove. It is also

much easler to reason about as a user; largely due to Its
inturtiveness.

» This property of occurring instantaneously, or indivisibly, leads to the use of the term
atomic as an alternative to the longer "linearizable”.

* In the examples, the linearization point of the counter

built on CAS s the linearization point of the first (and
SR llccessiul CAS update.

* A counter bullt using locking can be considered to linearize at any moment while the

locks are held, since any potentially conflicting operations are excluded from running
during that period

25

Does all this affect the programming?

» Let us focus on two typical low-level synchronisation
baradigms for the shared memory model

* Mutual Exclusion (mutex)
* Producer Consumer
* there are more, clearly, but they are crucially important for this talk

« M.Herlihy, N. Shavit. The art of multiprocessor programming. Elsevier

26

Mutex is a quite powerful mechanism'/

 Mutual exclusion

» Mutex algorithms are used in concurrent programming to avoid the simultaneous use
of a common resource, such as a global variable, by pieces of computer code called
critical sections.

» enforced via locks/unlocks
* requires deadlock-freedom

* typically used as the foundation of higher level mechanisms, such as semaphores,
monitors, ...

» Classic algorithms: Peterson, Lamport, Dekker, ..

* In the “register” model (i.e. a read-write memory)

L7

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Concurrent_programming
http://en.wikipedia.org/wiki/Global_variable
http://en.wikipedia.org/wiki/Critical_section

Peterson’s mutex (Peterson |93

1 class Peterson implements Lock {

2 // thread-locael index, 0 or I

3 private volatile boolean[] flag = new boolean[2];
4 private volatile int victim;

5 public void lock() {

6 int i = ThreadlD.get();

7
8

int j=1-1;
flag[i] = true; // I'm interested
g victim = i; /!l you go first
10 while (flag[j] && victim == 1) {}; // woit
11}
12 public void unlock() {
13 int i = ThreadlD.get();
14 flag[i] = false; [/l I'm not interested
15 |}
16 }

Figure 1.6 The Peterson lock algorithm.

B Ofks'ior 2 threads, require SC (or PRAM Consistency)

« Starvation-free, Deadlock-free

28

Bakery (Lamport 1976)

1 class Bakery implements Lock |

2 boolean[] flag;

3 Label[] label;

4 public Bakery (int n) {

5 flag = new boolean[n];

6 label = new Label[n];

7 for (int i = 0; i < n; i++) {

8 flag[i] = false; label[i] = 0;

3 }

10 '}

11 public void lock() {

12 int i = ThreadID.get();

13 flag[i] = true;

14 label[i] = max(label[0], ...,label[n-1]) + 1;
15 while ((3k != i)(flag[k] && (label[k],k) << (label[il,i))) {};
16}

17 public void unlock() {

18 flag[ThreadiD.get()] = false;

19 |}

20 }

Figure 1.9 The Bakery lock algorithm.

—— Works for n threads, require SC (or PRAM
Consistency)

i

Are they working on a x867 ‘"

* No!

* 1ry them, they are going to fail half of the times

* So, what can we do!

» “transactional” operations (CAS)

 extend the “register’ model with “transactional” operations (CAS)

« Compare-And-Swap, Test-And-Set, L oad-Linked-Store-Conditional
 what do they do!?

 execute a read AND a write as an atomic operation

* acts a memory fences, all in-flight operations are committed before proceeding

30

Lock with CAS! Easy |job.

volatile int lock = O;
void Critical() {
while (TestAndSet(&elock) == 1); // aequire lock
critical section //only one thread can be in this section at a time

lock =0 // release lock

31

50, what Is the problem?

» Atomic operations are memory fences

* each atomic operation requires the reconciliation of caches

* They do affect performancel

B

Micro-benchmarks: farm of tasks:

Used to implement: parameter sweeping, master-worker, etc.

void Emitter () { int main () {
for (1 =0; i <streamLen;++i) { spawn_thread(Emitter) ;
task = create task (); for (i =0; i <nworkers;++i){
queue=SELECT WORKER QUEUE() ; spawn_thread (Worker) ;
queue —>PUSH(task); }
} wait end () ;
} }

void Worker () {
while (!end of stream){
myqueue —>POP (&task);
do work (task) ;

}
}

L—0

B5)

=— Ideal O 50puS O 5uS 0.5 pS

Number of Cores

Lock vs Nonblocking CAS
(fine grain 0.5US)

%\\9 — |deal O POSIX lock O CAS

3 4 5 6 7
Number of Cores

Can we avold locks?

* Yes, In many ways using CAS (under relaxed memory
models)

» actually building concurrent data structures accessed via CAS

* they perform better than locks-based, but still they fence the memory

« and what about lock-free, CAS-free!

» Mutex cannot, Producer Consumer can be done
* also under some relaxed memory model, not all of them, however

* notice that Producer Consumer is inherently weaker with respect to Mutex
because It does requires the cooperation of partners whereas Mutex is required
to be deadlock-free

36

In design

Ia

we re-startec

o Fast

from t

-low

ne DasIcs

- Reducing the problem to the bare bones

* Producer-Consumer model (streaming)

* Directly control thread blocking using non-blocking synchronisations

 Directly design the “data channel”

* Having clear how data move in the whole memory hierarchy

e

e FFQ queue

B

Concurrent queues

Concurrency level
SPSC, SPMC, MCSP MPMC

Internal data structures

Array-based, List-based
Size
Bounded, Unbounded

Progress guarantees

No guarantee (blocking), Obstruction freedom, Lock freedom, Wait freedom

38

Blocking vs non-blocking

* What are the performance implications of the
brogress properties !

several task-based
approaches are here

-or medium/coarse grain applications:

Blocking faster than Non-Blocking

 For fine grain applications:

Non-Blocking faster than Blocking
Obstruction-Free faster thanjl.ock-Free faster than Wait-Free I'll focus here

ERlitmetoeneral case:

Stronger properties are harder to maintain

57

Nonblocking algorithms

* An algorithm Is obstruction-free if at any point, a single thread
executed In isolation (i.e., with all obstructing threads suspended)
for a bounded number of steps will complete its operation.

* An algorithm is lock-free If it satisfies that when the program
threads are run sufficiently long at least one of the threads makes
progress (for some sensible definition of progress). All wait-free
algorithms are lock-free.

* Lock-freedom allows individual threads to starve but guarantees system-wide throughput.

* An algorithm Is wait-free If every operation has a bound on the
number of steps the algorithm will take before the operation

completes.

* Wait-freedom is the strongest non-blocking guarantee of progress, combining guaranteed system-
wide throughput with starvation-freedom.

40

Related Work: Lock-free, CAS-4

* Single-Producer-Single-Consumer FIFO queues

Lamport et al. 1983 Trans. PLS (Sequential consistency only - in memory)
Higham and Kavalsh. 1997 ISPAN (PICI -TSO + proof - in memory)
Giacomoni et al. 2008 PPoPP (TSO + cache slipping - in memory)
BatchQueue & MCRingBuffer (TSO, double/multiple-buffering - in memory)

» Multiple-Producers-Multiple-Consumers FIFO queues

Blocking 2-locks - Michael and Scott

Nonblocking with CAS - list-based - Michael and Scott (PODC96)
Requires deferred reclamation/hazard pointers to avoid ABA problem

Nonblocking with CAS - array-based - Tsigas and Zhang (PAAQOI)

Nonblocking without CAS - in memory " |mpossible

Nonblocking without CAS - with mediator thread m» FastFlow
41

First attempt: Lamport FIFO

push_nonbocking(data) {
if (NEXTChead) == tail) {
return EWOULDBLOCK;
ks
buffer[head] = data;
head = NEXT(Chead);
return 0;

}

pop_nonblocking(data) {

if Chead == tail) {
return EWOULDBLOCK;

¥

data = buffer[tail];

tail = NEXT(tail);

return 0;

« Works under SC
« Doesn't work under weaker models

« Because of the need to serialise
data and head updates

» Even If it were working 1t pushing lot
of pressure on coherence system
because both producer and
consumer need to share both head
and tail index of the queue

27

Finally, FastFlow-like SPSC ¢

push_nonbocking(data) {
if (NEXTChead) == tail) {
return EWOULDBLOCK;
ks
buffer[head] = data;
head = NEXT(Chead);
return 0;

¥

pop_nonblocking(data) {

1f (head == tail) {
return EWOULDBLOCK;

by

data = buffer[tail];

tail = NEXT(tail);

return 0;

Lamport FIFO

405

push_nonbocking(data) {

h

1f (NULL !'= buffer[head]) {
return EWOULDBLOCK;

buffer[head] = data;

head = NEXT(Chead);

return 0;

pop_nonblocking(data) {

data = buffer[tail];

1f (NULL == data) {
return EWOULDBLOCK;

ks

buffer[tail] = NULL;

tail = NEXT(tail);

return 0;

FastFlow FIFO

Finally, FastFlow-like SPSC ¢

push_nonbocking(data) {

}

1f (NEXT(Chead) == tail) {
return EWOULDBLOCK;

ks

buffer[head] = data;

head = NEXT(Chead);

return 0;

pop_nonblocking(data) {

if Chead == tail) {
return EWOULDBLOCK;

}
data = buffer[tail];

tail = NEXT(tail);
return 0;

Eiiport FIFO

push_nonbocking(data) {
1f (NULL !'= buffer[head]) {
return EWOULDBLOCK;
buffer[head] = data;
head = NEXT(Chead);

return 0;
}

cking(data) {

Affer[tail];

WM®B enforce store — data) {
ordering on successive | EWOULDBLOCK;

cells/tndexes. Also it 1i1] = NULL;

enforees transitivity in XTCtatl);

polnter traversal. |

—
i-low FIFO

}

if (NEXTChead) — tail) {

¥
buffer[head] = data;

head = NEXT(Chead);
return 0;

pop_nonblocking(data) {

if Chead == tail) {
return EWOULDBLOCK;

¥

data = buffer[tail];

tail = NEXT(tail);

return 0;

Lamport FIFO

buffer[head] = data;
head = NEXT(Chead);
return 0;

cking(data) {
affer[tail];

WM®B enforce store — data) {

ordering own successive

EWOULDBLOCK;

OﬂLLS/i«V\de)(CS. ALSD Lt g-i_]_] = NULL;
enforees transitivity in FT(tatl);

poimfcer traversal. t

405

—
i-low FIFO

FastFlow queues tolerate TSO

* Do they eventually work?

* Yes, under SC and Total Store Order (150), and we will see they are very efficient

« TS0 is required because we should enforce the transitivity of updates, as shown in
a previous example

 That is important because x86 i1s TSO and on all architectures it can be emulated by
using a single write barrier

* J. Glacomoni et al. Fastforward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. PPoPP 2008. ACM.

BiefEsUlt cannot be directly extended toMultiple
Producer and Multiple Consumer

44

l MPI shmem impl
is ~ 190 ns at best
| (D.K. Panda)

h

High quality channels

bounded queue

Sh Mem Iatency > same core, different context
40 different cores, same CPU mwmmm
35 | different CPUs —
M. Aldinucci, M. Danelutto, P.
A o : g 307
Kilpatrick, M. Meneghin, and M. =
: o SZ5
Torquati. An efficient O
8 20
unbounded lock-free queue for = el
multi core systems. Euro-Par o 1 |
2012. 01 I I
5 L
0
1024 8192
buffer size
Message size | ib_write_bw MPI FastFlow | FastFlow/ZMQ
(bytes) (Mb/s) | (Mb/s) | /IB (Mb/s) /TPolB (Mb/s)
10 300 192 129 0.7
100 3,600 1,816 1,300 7.0
1,024 22,900 | 13,936 10,591 70.0
5,000 25,200 | 23,880 19,761 300.0
10,000 25,500 | 25,128 20,479 500.0
25,000 25,700 1,100.0
50,000 25,800 1,950.0
65,536 22,900 1,980.0
200,000 25,800 3,800.0
400,000 25,800 6,200.0

415

nanoseconds

unbounded queue

45
same core, different context
40 different cores, same CPU mmmm -
dlfferent CPUs w—m
35
30

25
20
1S

10
5 I
0

1024 8192
buffer size
Distributed throughput

A. Secco, |. Uddin, G. Peretti Pezzi, M. Torquati.

Message passing on InfiniBand RDMA for parallel
run-time supports. IEEE PDP 2014.

2 3 4 5 6 7
Number of Cores

| ock vs CAS vs SPSC/FastFHow

Number of Cores

6
(N
)
2 4
o
o4
-
pi
o————o0—0——0—0
O - o o o o
2 3 4 5 6 7

Number of Cores

FastFlow

Lock-free and CAS-free!

* Mutex cannot be done
Single-Producer-Single-Consumer (SPSC) can be done

4+ Producer-Consumer is inherently weaker with respect to Mutex

+ It does require the cooperation of partners whereas Mutex does not

* Expressive enough to build a streaming (or dataflow)
programming framework

+ MPMC = SPSC + mediator threads

* But what about productivity at large scale?

+ Write a program is defining a graph encoding true dependencies ... not
really easy

FastFlow layered architecture

Parallel applications
efficient and portable

High-level patterns
mapreduce, stencil, D&C, ...

Core patterns
pipeline, farm, feedback

Building blocks
queues, ff_node, ...

TCP/IP
CUDA OpenCL_H s

Multicore and many-core platforms

|<—| FastFlow |}

Clusters of multicore + many-core

Lock-free/fence-free non-blocking synchronisations

C++ STL-like implementation

thread-model agnostic (pthreads, QT, windows threads, ...)

+ + + 4

compliant with other synchronisation mechanisms in the business code (e.g. locks and semaphores)

§ VOvaXoFTe] §700F MOVSX 0F 79 B 700 MOVIAX, 0F 79 - f ") E) WE MOVAX0FTD e §790F MOVAX 0F 79 B 700F
3 . 4 Fer 1 ' 2 : 3 . 3 . 3 :
= A ED 3 ; 3
- r

Building blocks

Parallel applications
efficient and portable

High-level patterns
mapreduce, stencil, D&C, ...

Core patterns
pipeline, farm, feedback

Building blocks

=

o

LL

(7))

©

L

Y queues, ff_node, ...
‘ [TCP/IP

I | CUDA OpenCL hB/OFED

Multicore and many-core platforms
Clusters of multicore + many-core

Foundations
(of any concurrent model actually)

* Concurrent activities

4+ actors, processes, threads

* Synchronisations

4+ channels, semaphores, condVars, ...

* Data movements

+ memcopy, reference, ...

FastFlow concepts

* Implementation based around the concept of node
(ff_node class abstraction)

* A node is a concurrent abstraction with an input and
output SPSC queue

* Queues are lock/CAS-free and can be bounded or
unbounded

* nodes are connected through queues

* A node can be sequential or parallel

4+ pipeline, farm, map are parallel ff_node(s)

Building blocks

Nonblocking thread, can be
turned into blocking mode via

extra-functional interface

B— B
channel name node channel name
or channel or channel

channei
names

or channel or channel

channel O\A channel channel
names Q/V name name WP

minode

M-nodes are mediators, M-side of the interface
always has channel names, i.e. should be
bound with a channel

ff node

struct myNode: ff::ff node ({
int sve init() { // optional
// initialization part if needed
// called only once after the thread is started
return 0; // < 0 means that initialization failed

void *svec(void *task) { // mandatory
// do some computation on the input task
// called each time an input task is available

return task; // see next slides....

}

void sve end() { // optional
// termination part, if needed
// called only once if the svc method returns NULL
// or if EOS has arrived from the input stream

}

Create a DAG/graph

// Create 6 generic nodes - max 1 in channel 1 out

channel ._D@ ._D@ ._D@
N n1(1),n2(2),n3(3),n4(4),n5(5),n6(6);

nl.create_input_buffer(100); .. ._D ._D@ ._D

n6.create_input_buffer(100);

// 2 emitters: el->nl, el->n2, e2->n3, e2->n4
std: :vector<ff_node*> wel, weZ;
wel.push_back(&nl); wel.push_back(&n2);
weZ.push_back(&n3); we2.push_back(&n4);

E el(wel,1,ntasks), e2(we2,2,ntasks);

// 1link nl->n5 and n4->n6
nl.set_output(n5.get_in_buffer());
n4.set_output(n6.get_in_buffer());

// 1 collector + linking: n2->cl, n3->cl

n2.create_output_buffer(100);
n3.create_output_buffer(100);

std: :vector<ff_node*> wcl;
wcl.push_back(&n2);
wcl.push_back(&n3);

C ci(wcl,1 /* id */);
cl.create_input_buffer(100);

// run all nodes and wait end
nl.run(); .. n6.run(); el.run(); e2.run(); cl.run(Q);

als ALC 2 AC 2 ALC
WAV i A —

Create a DAG/graph

// Create 6 generic nodes - max 1 in channel 1 out

channel ._D@ ._D@ ._D@
N n1(1),n2(2),n3(3),n4(4),n5(5),n6(6);

nl.create_input_buffer(100); .. ._D ._D@ ._D

n6.create_input_buffer(100);

A
// 2 emitters: el->nl, el->n2, e2->n3, e2->n4 @
std: :vector<ff_node*> wel, weZ; A
wel.push_back(&nl); wel.push_back(&n2);
we2.push_back(&n3); we2.push_back(&n4); B
E el(wel,1,ntasks), e2(we2,2,ntasks); @ Y
QA

// 1link nl->n5 and n4->n6
nl.set_output(n5.get_in_buffer());
n4.set_output(n6.get_in_buffer());

// 1 collector + linking: n2->cl, n3->cl

n2.create_output_buffer(100);
n3.create_output_buffer(100);

std: :vector<ff_node*> wcl;
wcl.push_back(&n2);
wcl.push_back(&n3);

C ci(wcl,1 /* id */);
cl.create_input_buffer(100);

// run all nodes and wait end
nl.run(); .. n6.run(); el.run(); e2.run(); cl.run(Q);

als ALC 2 AC 2 ALC
WAV i A —

Create a DAG/graph

// Create 6 generic nodes - max 1 in channel 1 out
channel

N n1(1),n2(2),n3(3),n4(4),n5(5),n6(6);
nl.create_input_buffer(100); .. @
n6.create_input_buffer(100);

oo (n)
// 2 emitters: el->nl, el->n2, e2->n3, e2->n4 @

std: :vector<ff_node*> wel, weZ; A'm ..<::)
wel.push_back(&nl); wel.push_back(&n2);

weZ.push_back(&n3); we2.push_back(&n4); N _><::>
E el(wel,1,ntasks), e2(we2,2,ntasks); @ Y

// 1link nl->n5 and n4->n6
nl.set_output(n5.get_in_buffer());
n4.set_output(n6.get_in_buffer());

// 1 collector + linking: n2->cl, n3->cl

n2.create_output_buffer(100);
n3.create_output_buffer(100);

std: :vector<ff_node*> wcl;
wcl.push_back(&n2);
wcl.push_back(&n3);

C ci(wcl,1 /* id */);
cl.create_input_buffer(100);

// run all nodes and wait end
nl.run(); .. n6.run(); el.run(); e2.run(); cl.run(Q);

als ALC 2 AC 2 ALC
WAV i A —

Create a DAG/graph

// Create 6 generic nodes - max 1 in channel 1 out
channel

N n1(1),n2(2),n3(3),n4(4),n5(5),n6(6);
nl.create_input_buffer(100); ..
n6.create_input_buffer(100);

// 2 emitters: el->nl, el->n2, e2->n3, e2->n4

std: :vector<ff_node*> wel, weZ;

wel.push_back(&nl); wel.push_back(&n2); »@_D'_@
we2.push_back(&n3); we2.push_back(&n4); @ A

E el(wel,1,ntasks), e2(we2,2,ntasks); »@

// link nl->n5 and n4->n6 @ v @

nl.set_output(n5.get_in_buffer());

n4.set_output(n6.get_in_buffer()); >@

// 1 collector + linking: n2->cl, n3->cl

n2.create_output_buffer(100);
n3.create_output_buffer(100);

std: :vector<ff_node*> wcl;
wcl.push_back(&n2);
wcl.push_back(&n3);

C ci(wcl,1 /* id */);
cl.create_input_buffer(100);

// run all nodes and wait end
nl.run(); .. n6.run(); el.run(); e2.run(); cl.run(Q);

als ALC 2 AC 2 ALC
MOV X A A e g

Create a DAG/graph

// Create 6 generic nodes - max 1 in channel 1 out
channel

N n1(1),n2(2),n3(3),n4(4),n5(5),n6(6);
nl.create_input_buffer(100); ..
n6.create_input_buffer(100);

// 2 emitters: el->nl, el->n2, e2->n3, e2->n4
std: :vector<ff_node*> wel, weZ;
wel.push_back(&nl); wel.push_back(&n2);
weZ.push_back(&n3); we2.push_back(&n4);

E el(wel,1,ntasks), e2(we2,2,ntasks);

// 1link nl->n5 and n4->n6
nl.set_output(n5.get_in_buffer());

n4.set_output(n6.get_in_buffer()); _ I-D@—OI—O@
// 1 collector + linking: n2->cl, n3->cl .-D@‘b
()

n2.create_output_buffer(100);
n3.create_output_buffer(100); .F¢><:::>4>|r47

std: :vector<ff_node*> wcl;
wcl.push_back(&n2); I—D‘-’I—O.
wcl.push_back(&n3);

C cl(wcl,1 /* id */);
cl.create_input_buffer(100);

// run all nodes and wait end
nl.run(); .. n6.run(); el.run(); e2.run(); cl.run(Q);

Not task processing

+ FastFlow is NOT a task based framework, focus specifically on
data movements and synchronisations (sh-mem/distr/GPU)

4+ it does not expose the task concept, it rather abstracts:

® networks of nodes (threads/processes) that can synchronise efficiently (via message
passing) and move data (via shared memory or message passing)

® predefined, OO extendable, compositional patterns (i.e. networks of nodes)

4+ orthogonal way of thinking w.r.t. tasks

® nodes are pinned to core, no over-provisioning, ...

4+ it can be used as middleware to build your own task-based
framework

® inherit lock-free synchronisation mechanisms (that aren’t friendly guys)

® just create an object, and pass the pointer

® predefined facilities to manage load-balancing, data-placement, OO-extendable

Core patterns

Parallel applications
efficient and portable

High-level patterns
mapreduce, stencil, D&C, ...

Core patterns
pipeline, farm, feedback

Building blocks
queues, ff_node, ...

[TCP/IP
—J CUDA | | OpenCL LIB/OFED

Multicore and many-core platforms

FastFlow |

—

Clusters of multicore + many-core

Core patterns: compositional pipeline, farm and feedback qualifier

Enough to build any useful streaming network;, i.e. the implementation
of all other patterns

For GPGPU: + stenciReduce - evaluation ongoing

S MOVAXOFTO —n ¥ MOVAX, 0F 79 . 0F MOV AX.0F 79 - OF77
. : i . oo 3 1
[A I)
'\ / | T

Farm

* Exploit parallelism on a stream (or a set) of
independent tasks

4+ Master-worker on a stream of tasks

4+ No other data dependencies are enforced on tasks beyond task
scheduling on workers and task outputs collection

They can enforced in the worker business code (e.g. via mutex)

task
outputs
tasks

+
4+ emitter is a scheduler
4+ collector is a gatherer o
+

all actors are ff nodes

emitter collector

workers

Farm + feedback

* Master-worker

+ just a variant of farm

+ farm.wrap_around()

workers

Pipeline

* Pipeline

4+ functional composition

* pipeline + wrap_around

4+ functional composition wither recursion

000
Q00

task-farm (+ feedb_qgg)

e e O-@— - =0

pipeline (+feedback)

Much more

* lock-less parallel memory allocator

* scheduling

* pinning

* memory affinity

* passive mediators

* load-balancing

* offloading on soft and hardware accelerators (OpenCL and CUDA)
* distributed

http://mc-fastflow.sourceforge.net/

Printed by Marco Aldinucci

test_farm.cpp test_farm.cpp

[** // alternatively
First FastFlow farm. //ff _send_out(task); // ff send out(worker_id,task);
//task = new ff task t(100+ntask);
clang++ -I ./fastflow test farm.cpp -o test farm //ff send out(task);
//return GO_ON;
Alternative versions (removing some of the commented lines) }
private:
— simple farm int ntask;
— —DTRACE_FASTFLOW }:
- emit task via ff send out
- without collector // the gatherer filter
— initialise workers/nodes via constructor class Collector: public ff node {
— ondemand policy (or user—-defined) public:
*/ void * svc(void * task) {
ff task t * t = (ff _task_t *) task;
#include <vector> std::cout << "Collector received " << t—->payload << "\n";
#include <iostream> //std::fflush(stdout);
#include <ff/farm.hpp> delete t;
return GO_ON;
using namespace ff; }
}i
struct ff task_t {
ff task t(int c): payload(c) {} int main(int argc, char * argv[]) {
int nworkers = 3;
int payload; int streamlen = 1000;
}i
if (argc>1) {
if (argc!=3) {
// generic worker std::cerr << "use:"
class Worker: public ff node { << argv[0]
public: << " nworkers streamlen\n" ;
// Constructor return -1;
//Worker () {}; }
nworkers=atoi(argv[1l]);
// Service method - to hold the business code - will called each received ta streamlen=atoi(argv[2]);
sk }
void * svc(void * task) {
ff task t * t = (ff task_t *)task; if (!nworkers || !streamlen) ({
//std::cout << "Worker " << ff node::get my id() std::cerr << "Wrong parameters values\n" ;
// << " received task " << t->payload << "\n"; return -1;
//std::fflush(stdout); }
// business code
t—>payload++; ff farm<> farm; // farm object
usleep(500);
// end business code Emitter E(streamlen);
return task; farm.add emitter(&E);
}
std::vector<ff node *> w;
// init the worker - executed before first task - optional for(int i=0;i<nworkers;++i) w.push back(new Worker);
//int svce_init() { return 0; } farm.add workers(w); // add all workers to the farm
// finalise the worker - executed after last task - optional Collector C;
//void svc_end() {} farm.add collector(&C);
}i //farm.set scheduling ondemand(4);
// Emitter - no input channel in this case - will start spontaneusly if (farm.run_and wait _end()<0) {
class Emitter: public ff node { error ("running farm\n") ;
public: return -1;
Emitter(int max_task):ntask(max_task) {};
std::cerr << "DONE,time=" << farm.ffTime() << " (ms)\n";
farm.ffStats(std::cerr);
void * svc(void *) {
——ntask; return 0;
// on return NULL the node terminate. Termination is propagated to all w }
orkers

if (ntask<0) return NULL;
ff task t * task = new ff task t(ntask);
return task;

Saturday June 21, 2014 test_farm.cpp 11

Printed by Marco Aldinucci

test_farm_acc.cpp test_farm_acc.cpp

/**
FastFlow farm accelerator.

clang++ —-I ./fastflow test farm.cpp —-DTRACE FASTFLOW -o test farm

— load results NB and B
- freezing

*/

#include <vector>
#include <iostream>
#include <ff/farm.hpp>

using namespace ff;

struct ff task t {
ff task t(int c): payload(c) {}

int payload;

// generic worker
class Worker: public ff node {
public:

// Constructor

//Worker () {};

// Service method — to hold the business code — will called each received ta

sk
void * svc(void * task) {
ff task t * t = (ff_task t *)task;
//std::cout << "Worker " << ff node::get my id()
// << " received task " << t—>payload << "\n";
//std::fflush(stdout);
// business code
t->payload++;
usleep(random() % 1000);
// end business code
return task;
}
// init the worker - executed before first task - optional
//int svc_init() { return 0; }
// finalise the worker - executed after last task - optional
//void svc_end() {}
}i

int main(int argc, char * argv[]) {
int nworkers = 3;

~e

ff farm<> farm(true /* acc mode */); // farm object

// using standard emitter
//Emitter E(streamlen);
//farm.add emitter(&E);

std::vector<ff node *> w;
for(int i=0;i<nworkers;++i) w.push back(new Worker);
farm.add workers(w); // add all workers to the farm

// and standard collector
//Collector C;
farm.add collector (NULL);

farm.run();

//for (int j=0;j<4;++3j) {
//farm.run_then freeze();
void *result;
for (int i=0;i<streamlen;i++) {
ff task_t * ii = new ff task t(i);
std::cout << "[Main] Offloading " << i << "\n";
// Here offloading computation onto the farm
farm.offload(ii);

std::cout << "[Main] Do something else\n" ;
usleep(100); // change me to check nonblocking result get

// possibly get results (nonblocking)
if (farm.load result nb(&result)) {
std::cerr << "[Main] NBresult=" << ((ff_task t*)result)->payload << "\n

delete ((ff task t*)result);
}

}
std::cout << "[Main] EOS arrived\n" ;
farm.offload((void *)FF _EOS);

// get all remaining results syncronously.
while(farm.load result(&result)) {
std::cerr << "[Main] Bresult=" << ((f£f_task t*)result)—->payload << "\n";
delete ((ff_task t*)result);
}
farm.wait();
//farm.wait freezing();
std::cout << "[Main] Farm accelerator stopped\n" ;
/1%
std::cerr << "DONE,time=" << farm.ffTime() << " (ms)\n";
farm.ffStats(std::cerr);

int streamlen = 1000; return 0;
}
if (argc>1) {
if (argc!=3) {
std::cerr << "use:"
<< argv[0]
<< " nworkers streamlen\n" ;
return -1;
}
nworkers=atoi(argv([1l]);
streamlen=atoi(argv[2]);
}
if (!nworkers || !streamlen) {
std::cerr << "Wrong parameters values\n" ;
return -1;
}
Saturday June 21, 2014 test_farm_acc.cpp 11

test_pipe.cpp

/*
Very basic test for the FastFlow pipeline (actually a 2-stage torus).

clang++ —-I ./fastflow test pipe.cpp -0 test pipe
clang++ —-I ./fastflow test pipe.cpp —-DTRACE FASTFLOW -o test pipe

*/

#include <iostream>
#include <ff/pipeline.hpp>

using namespace ff;

struct ff task t {
ff task_t() {}
int payload;
bi

// generic stage
class Stage: public ff node {
public:
Stage(unsigned int streamlen):streamlen(streamlen),sum(0) {}

void * svc(void * task) {
unsigned int * t = (unsigned int *)task;

if (!1t) {
t = (unsigned int*)malloc(sizeof(int));
if (!t) abort();

*t=0;

task = t;
} else { sumt=*t; *t+=1;}
if (*t == streamlen) return NULL;
task = t;

return task;
}
void svc_end() {
if (ff node::get my id())
std::cout << "Sum:" << sum << "\n";

}

private:
unsigned int streamlen;
unsigned int sum;

}i
int main(int argc, char * argv[]) {
int streamlen = 1000;
// bild a 2-stage pipeline
ff pipeline pipe;
pipe.add stage(new Stage(streamlen));
pipe.add stage(new Stage(streamlen));
pipe.wrap around();
ffTime (START TIME);
if (pipe.run_and wait _end()<0) {
error ("running pipeline\n") ;
return -1;
}
ffTime (STOP_TIME);
std::cerr << "DONE,pipe time=" << pipe.ffTime() << " (ms)n";
std::cerr << "DONE,total time=" << ffTime(GET TIME) << " (ms)\n";
pipe.ffStats(std::cerr);
return 0;
}

Saturday June 21, 2014 test_pipe.cpp

Printed by Marco Aldinucci

11

Printed by Marco Aldinucci

test_lb_affinity.cpp test_lb_affinity.cpp

/* }
farm with userOdefined affinity scheduling policy }
*/ for (int i = 0; i < NWORKERS; i++)
done &= completed[i];
#include <ff/farm.hpp> if (done) {
free(worker task);
using namespace ff; delete[] completed;
return NULL;
#define NWORKERS 4 }
#define INBUF_Q SIZE 4 else done = true;
return GO_ON;
//#define MNODES 2 }
#define CORES 4
private:
typedef struct ff task ({ ff loadbalancer* 1lb;
int sourceW; const svector<ff node*> &workers;
int mnode; bool* completed;
int core; bool done;
int done; };
} £ff task t;
class worker: public ff node {
class emitter: public ff node { public:
public: worker (): taskcount(0){};
emitter (ff loadbalancer* const lb, const svector<ff node*> &workers): void* svc(void* t) {
1b(1lb) ,workers (workers) { ff task_t* worker_task = (ff_task t*) t;
completed = new bool[NWORKERS]; ++worker_ task->done;
for (int i = 0; i < NWORKERS; i++) usleep(worker task->sourceW * 100);
completed[i] = false; printf ("[%d] received from emitter task workerid %d on core %d\n" ,
done=0; get my id(), worker task—->sourceW, worker task—->core);
}
++taskcount;
void* svc(void *t) { return (worker_ task);
ff task_t* worker_ task = (ff_task t*) t; }
if (worker task == NULL) { void svc_end (){
for (int j = 0; j < INBUF _Q SIZE; j++) { printf ("[%d] processed %d tasks\n" ,get my id(),taskcount);
for (int i = 0; i < NWORKERS; i++) { }
int targetworker = workers[i]->get my id(); private:
int targetcore = threadMapper::instance()—->getCorelId(lb—>get int taskcount;
Tid(workers[i])); }i
int targetmnode = targetcore/8;
// here allocate the task int main() {
// numa_malloc(sizeof (ff task t),mnode) std::vector<ff node *> workers;
worker task = (ff task t *) malloc(sizeof(ff task t)); ff farm<> farm(false);
worker task—->sourceW = targetworker; for (int i = 0; i < NWORKERS; i++)
// here danger of race condition workers.push back(new worker());
// only static information can be used emitter em(farm.getlb(), farm.getWorkers());
worker task->core = targetcore; farm.add emitter(&em);
worker task->mnode = targetmnode; farm.add workers (workers) ;
worker task->done = 0; farm.set_scheduling_ondemand(INBUF_Q SIZE);
bool res = 1lb—>ff send out_to(worker_ task, targetworker); farm.wrap_around();
if (res) if (farm.run and wait end() < 0) {
printf ("sent to worker %d on core %d mnode %d\n" , error ("running farm\n") ;
worker task—->sourceW, return -1;
worker task->core, }
worker task->mnode); return 0;
else printf("ERROR: send failed — should never happen — task is lost — queue are }
too short\n") ;
}
}
} else {

if (worker task—->done<10) {

printf ("[E] recv from worker %d on core %d mnode %d\n" ,
worker task—->sourceW, worker_ task->core,
worker_ task—->mnode) ;
lb—>ff send_out_to(worker_task, worker_task->sourceW);
} else {
completed[worker task—>sourceW] = true;

Saturday June 21, 2014 test_lb_affinity.cpp 11

test_nesting_pipe_farm.cpp test_nesting_pipe_farm.cpp

/*

* Mixing FastFlow pipeline and farm. The farm module has neihter the Emitter
* nor the Collector filters.

*

* | e 3-stage pipeline —-—————————-

*

i v

* (stage2 1->stage2 2)

* v v

* stagel-—>farm |(stage2 l->stage2 2)|-—>stage3
*

* (stage2_ l->stage2 2)

* A A

* |- 2-stage pipe -|

*/

#include <iostream>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
#include <ff/allocator.hpp>

using namespace ff;
static ff allocator ffalloc;

class Stagel: public ff node {
public:
Stagel(unsigned int streamlen):streamlen(streamlen),cnt(0){}

void * svc(void *) {
int * t;
t = (int*)ffalloc.malloc(sizeof(int));
if (!t) abort();

*t=cnt++;

if (cnt > streamlen) {
ffalloc.free(t);
t = NULL; // EOS

}

return t;

int sve_init() {
if (ffalloc.registerAllocator()<0) {
error ("registerAllocator fails\n") ;
return -1;
}

return 0;

}

private:
unsigned int streamlen;
unsigned int cnt;

}i
class Stage2 1: public ff node {
public:
void * svc(void * task) {
return task;
}
}i
class Stage2 2: public ff node {
public:
void * svc(void * task) {
return task;
}
}i

Printed by Marco Aldinucci

class Stage3: public ff node {
public:
Stage3():sum(0){}

void * svc(void * task) {

int * t = (int *)task;
if (!t) abort();
sum +=*t;

ffalloc.free(task);
task = GO_ON; // we want to be sure to continue
return task;

}
int sve_init() {
if (ffalloc.registerdfree()<0) {
error ("registerdfree fails\n") ;
return -1;
}
return 0;
}

void svc_end() {
std::cout << "Sum: " << sum << "\n";
}

private:
unsigned int sum;
}i

int main(int argc, char * argv[]) {
int nworkers=3;
int streamlen=1000;

if (argc>1l) {
if (argc!=3) {
std::cerr << "use: "
return -1;

<< argv[0] << " streamlen num—farm—workers\n" ;

streamlen=atoi(argv[1l]);
nworkers=atoi(argv[2]);

}

ffalloc.init(); // Init allocator ...

ff pipeline pipe;

pipe.add stage(new Stagel(streamlen));

ff farm<> farm; // build farm without Collector
farm.add collector(NULL); // standard collector

std::vector<ff node *> w;

for(int i=0;i<nworkers;++i) {
ff pipeline * pipe2 = new ff pipeline;
pipe2—->add stage(new Stage2 1);
pipe2—->add_stage(new Stage2 2);
w.push back(pipe2);

farm.add_ workers(w);
pipe.add_stage(&farm);

pipe.add_stage(new Stage3);

std::cerr << "Starting..\n";

if (pipe.run_and wait end()<0) {
error ("running pipeline\n") ;
return -1;

}
pipe.ffStats(std::cout);
return 0;

}

Saturday June 21, 2014

test_nesting_pipe_farm.cpp

11

