
Parallel Programming using FastFlow

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

Karlsruhe, September 2nd, 2014

 2

Outline

● Structured Parallel Programming

– Algorithmic Skeletons & Parallel Design Patterns

● FastFlow: A data-flow framework for heterogeneous many-core
platforms

– In this talk we consider mainly multi-core systems

● Applications developed using FastFlow & Structured Parallel
Programming

 3

Structured Parallel Programming

● Structured parallel programming aims to provide standard (and
effective) rules for composing parallel computations in a
machine-independent way

– Goal: reducing the complexity of parallelization problems by
introducing constraints

i.e. restricting the computation structure

– Modularity portability and programmability are the keywords

● Parallel paradigms are the base components of parallel
applications

● Using structured parallel programming force to think parallel

 4

Structured Parallel Programming

● The parallel programmer is relieved from all concerns related to
the implementation of the parallel paradigms on the target
platform

● The parallel programmer has to concentrate “only“ on
computational aspects

Separation of concerns principles

 5

● From HPC community

● From early '90

● Pre-defined parallel high-order
functions provided as constructs
or lib calls

Algorithmic Skeletons
Parallel Design

Patterns

● From SW engineering community

● From early '00

● “Recipes“ to handle parallelism
(name, problem, algorithms,
solutions, ...)

● The same concept at different abstraction levels

● We use the two terms patterns and skeletons, interchangeably.

– We want to emphasise the similarities of these two concepts

Skeletons & Patterns

 6

run-time
support

System developer

Map, Reduce, Stencil,....

Pipeline, Task-Farm

Divide&Conquer, MDF, ….

Patterns

Structured Parallel Programming using
Patterns

High-level code
App developer

Which pattern ?

insta
ntia

teco
mpose

se
lect

iterate

exte
nd

Data Parallel

Stream Parallel

Task Parallel

Problem

 7

Structured Parallel Programming: example

● Problem: apply the function F to all N elements of the input array A

● Select the Map pattern

● Instantiate the Map pattern with static partitioning
App developer

run-time
support

● Analyse the result: the workload is unbalanced

● Instantiate the Map pattern with dynamic partitioning
App developer

run-time
support

● Select the “best” Map implementation on the target platform with
dynamic partitioning of data

● Execute the code and provide the result

● Select the “best” Map implementation on the target platform with
static partitioning of data

● Execute the code and provide the result

 8

Assessment (algorithmic skeletons)

Separation of
concerns

● Application programmer: what is computed
● System programmer: how the result is computed

Inversion of
control

● Program structure suggested by the programmer
● The run-time selects the optimization for the target platform

Performance
● Close to hand tuned code (sometimes better)
● Reduced development time. Lower total cost to solution.

 “Structured Parallel Programming” by Marco Danelutto

 Available on-line as SPM course material at M. Danelutto web page

 http://www.di.unipi.it/~marcod

 9

The FastFlow framework
● C++ class library

● Promotes structured parallel
programming

● It aims to be flexible and efficient
enough to target multi-core, many-
core and distributed systems.

● Layered design:

– Building blocks minimal set of
mechanisms: channels, code
wrappers, combinators.

– Core patterns streaming patterns
(pipeline and task-farm) plus the
feedback pattern modifier

– High-level patterns aim to provide
flexible reusable parametric patterns
for solving specific parallel problems

http://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

 10

FastFlow Building Blocks

● nodes are concurrent activities

– POSIX threads
● arrows are shared-memory channels

– implemented as SPSC lock-free queues

struct myNode: ff_node {
 void *svc(void *task) { … return task; }
};

Minimal definition of a node :

 11

Stream Parallel Patterns (“core” patterns)

A stream is a sequence of data items having the same type

ff_pipe<myTask> pipe(S1,S2,...,Sn);
pipe.run_and_wait_end();

std::vector<ff_node*> WorkerArray;

ff_farm<> farm(WorkerArray, &E, &C);
farm.run_and_wait_end();

pipeline

task-farm ff_node

Emitter:
schedules input data items

Collector:
gathers results

 12

FastFlow “core” patterns

pipeline

task-farm

Specializations

Patterns

 13

Core Patterns Composition

 14

Example: filtering images

4-stage pipeline

replicating Blur & Emboss
functions by using task-farm farm with pipeline workers

Time= 288s

Time= 33s

Time= 112s

Time= 71s Time= 75s

Time= 34soptimizing resources

2 Xeon E5-2695 @ 2.4GHz, 1 disk storage

parallelizing I/O too

 15

Data Parallel Patterns (1)

ParallelFor/ParallelForReduce

ParallelForPipeReduce

ParallelFor pf;
pf.parallel_for(0,N,[&](const long i) {
 A[i] = F(i);
});

ParallelForReduce<double> pfr;
pfr.parallel_reduce(sum, 0.0,
 0,N,[&](const long i) {
 sum += F(i);
}, [](double &sum, const double v) {
 sum += v;
});

ParallelForPipeReduce<task_t> pfr;
auto MapF = [&](.......ff_buffernode &n) {
 … ;
 n.put(task);
};
auto ReducdF = [&](task_t *task) { … };
pfr.parallel_reduce_idx(0,N,step,chunk,
 MapF, ReduceF);

● Static and dynamic scheduling of tasks

● With or without scheduler thread (Sched)

M: map function

R: reduce function

M & R: computed in parallel

M & R: computed in pipeline

 16

Data Parallel Patterns (2)

Map Stencil poolEvolution

● May be used inside stream parallel patterns (pipeline and task-farm)

● On multi-core systems all of them are implemented on top of
ParallelFor* patterns

– Algorithms + ParallelFor* wrappers

● For example, the Map pattern is a FastFlow node with inside an
“optimized instantiation“ of the ParallelForReduce pattern

● Targeting GPGPUs: support for both CUDA and/or OpenCL
available for some data-parallel patterns
– Work still in progress

struct myMap: ff_map<> {
 void *svc(void *task) { ….;
 ff_map<>::parallel_for(.....);
}};

 17

Example: Mandelbrot set (1)

● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly
leads to load unbalanced computation and poor performance

– Let's consider the minimum computation unit a single image line (image
size 2048x2048, max 103 iterations per point)

● Static partitioning of lines (48 workers) MaxSpedup 14
● Dynamic partitioning of lines (48 workers) MaxSpeedup 37

2 Xeon E5-2695 @ 2.4GHz, 1 disk storage

Data-partitioning may have a big impact on the performance

 18

Example: Mandelbrot set (2)

● Suppose now we want to compute a number of Mandelbrot images (for
example varying the computing threshold per point)

● We have basically two options:

1. One single parallel-for inside a sequential for iterating over all different threshold
points

2. A task-farm with map workers implementing
two different scheduling strategies

● Which one is better having limited resources ?

– Depends on many factors, too difficult to say in advance

for_each threshold values
 parallel_for (Mandel(threshold));

Moving quickly between the two solutions
is the key point

......

 19

Task-parallel patterns

Macro-Data Flow (MDF)

Divide&Conquer

pipeline(taskGen, farm(Ws,Sched))

● The MDF executes data-dependency graph (DAG)

● Is a general approach to parallelism

● The user has to specify data dependency using a
sequential function “taskGen“ and to generate
tasks (by using the AddTask method)

● The run-time automatically takes care of
dependencies and then schedules ready task to Ws

void taskGen(mdf) {
 Param 1 = {&A, INPUT};
 Param 2 = {&A, OUTPUT};
 mdf->AddTask(Params, F, A);
}
ff_mdf<Params> mdf(taskGen);
mdf.run_and_wait_end();

● Currently is a task-farm with feedback channel
with specialized Emitter and Collector.

 20

Example: Strassen's algorithm

● Matrix multiplication using Strassen's algorithm:

S1 = A11 + A22 S2 = B11 + B22 P1 = S1 * S2
S3 = A21 + A22 P2 = S3 * B11
S4 = B12 – B22 P3 = A11 * S4
S5 = B21 – B11 P4 = A22 * S5
S6 = A11 + A12 P5 = S6 * B22
S7 = A21 – A11 S8 = B11 + B12 P6 = S7 * S8
S9 = A12 – A22 S10 = B21 + B22 P7 = S9*S10
C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 - P2 + P3 + P6

A11 A12

A21 A22

B11 B12

B21 B22
X

C11 C12

C21 C22
=

● The sequential function taskGen is responsible for generating instructions S1, S2, P1,
S3, P2 ….... in any order specifying INPUT and OUTPUT dependencies.

● Each macro instruction can be computed in parallel using a ParallelFor pattern or
optimized linear algebra matrix operations (BLAS, PLASMA, Lapack...)

 21

Real applications (some)

Stream Parallel

Data Parallel

Task Parallel

Bowtie (BT) and BWA Sequence Alignment Tools

Peafowl, an open-source parallel DPI framework

Two Stage Image and Video Denoiser

Block-based LU & Cholesky factorizations

YaDT-FF: fast C4.5 classifier (*)

(*) M. Aldinucci, S. Ruggieri and M. Torquati “Decision Tree building on muli-core using
FastFlow“, Concurrency and Computations: practice and experience, Vol. 26, 2014

 22

Stream: Bowtie (BT) and DWA Sequence
Alignment Tools

● Very widely used tools for DNA alignment

● Hand-tuned C/C++/SSE2 code

● Spin-locks + POSIX Threads

● Reads are streamed from memory-mapped files to
worker threads

● Task-farm+feedback implementation in FastFlow

● Thread pinning + memory affinity + affinity scheduling

● Quite substantial improvement in performance
C. Misale, G. Ferrero, M. Torquati, M. Aldinucci “Sequence alignment tools: one parallel
pattern to rule them all?“ BioMed Research International, 2014

 23

Stream: 10Gbit Deep Packet Inspection (DPI)
on multi-core using Peafowl

● Peafowl is an open-source high-
performance DPI framework
with FastFlow-based run-time

– Task-farm + customized
Emitter and Collector

● We developed an HTTP virus
pattern matching application for
10 Gibit networks

● It is able to sustain the full
network bandwidth using
commodity HW

M. Danelutto, L. Deri, D. De Sensi and M. Torquati “Deep
Packet Inspection on commodity hardware using FastFlow” in
PARCO 2013 conference, Vol. 25, pg. 99-99, 2013

 24

Task-Parallel: LU & Cholesky factorizations
using the MDF pattern

● Dense matrix, block-based algorithms

● Macro-Data-Flow (MDF) pattern
encoding dependency graph (DAG)

– The DAG is generated dynamically
during computation

● Configurable scheduling of tasks,
affinity scheduling

● Comparable performance w.r.t.
specialized multi-core dense linear
algebra framework (PLASMA)

D. Buono, M. Danelutto, T. De Matteis, G. Mencagli and M.
Torquati “A light-weight run-time support for fast dense linear
algebra on multi-core” in PDCN 2014 conference, 2014 DAG represents, 5 tiles, left-looking

version of Cholesky algorithm

 25

Data-Parallel: Two stage image restoration

● Detect: adaptive median filter, produces a noise map

● Denoise: variational Restoration (iterative optimization algorithm)

– 9-point stencil computation
● High-quality edge preserving filtering

● Higher computational costs w.r.t. other edge preserving filters

– without parallelization, no practical use of this technique because too costly

● The 2 phases can be pipelined for video streaming
M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati and S. Palazzo “A parallel edge preserving
algorithm for salt and pepper image denoising” IPTA 2012 conference, 2012

 26

Salt & Pepper image restoration

 27

Stream+Data-Parallel: Video de-noising,
possible parallelization options using
patterns

M. Aldinucci, M. Torquati, M. Drocco, G. Peretti
Pezzi and C. Spampinato “Combining pattern
level abstractions and efficiency in GPGPUs”
GTC 2014 invited talk, 2014

 28

Video de-noising: different deployments

● Best option is to use all available GPGPUs

CPU C++ only

OpenCL CPU +
GPGPU

GPGPUs only

 29

Video de-noising demo

Thanks to Marco Aldinucci for the demo video

 30

Conclusions

● Structured Parallel Programming models have been here from
many years

– It is proved they work

– clear semantics, enforce separation of concerns, allow rapid
prototyping and portability of code, almost same performance as
hand-tuned parallel code.

● FastFlow: a C++ class library framework

– Research project framework

– Promotes structured parallel programming

– Can be used at different levels, with each level providing a small
number of building-blocks/patterns with clear parallel semantics

 31

Thanks for your attention!

http://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

FastFlow project site: EU-FP7 projects using FastFlow:

Thanks to:

Marco Danelutto (Pisa)
Marco Aldinucci (Turin)
Peter Kilpatrick (Belfast)

University of Pisa University of Turin Queen's University Belfast

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31

