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Outhne

Parallel patterns and structured parallel programming

On the hierarchy of abstractions for parallel programming

Data-centric concurrency

FastFlow: a data-centric run-time support for heterogenous platforms

Applications

With FastFlow and other frameworks

... and lot of cars



MPI1

1s like a car, you can drive 1t as you like




MPI, threads, HW-CAS spinlocks, ...

are like cars, you can drive 1t as you like




#include <stdio.h>
#include "mpi.h"

#define MAXPROC 8 /* Max number of procsses */ : : :

=0; i< ; i+
#define NAMELEN 80 /* Max length of machine name */ forriztgznlggﬁNGT?i?$: ) A
#define LENGTH 24 /* Lengt of send buffer is divisible by 2, 4, 6 and 8 */ P SESA Y ;

}

main(int argc, char* argv[]) ({ printf("\n");

int 1, J, np, me; /* Receive messages with hostname and the scattered data */

const int nametag = 42; /* Tag value for sending name */
: . /* from all other processes */
const int datatag = 43; /* Tag value for sending data */ for (i=1; i<np; i++) {
i = Q- * i * it r
W1 Reov’ (6hostname(i], NANELEN, WPI_CHAR, i, nametag,
. g J MPI_COMM WORLD,  &status);
: MPI Rec & LENGTH/n MPI INT 1 datata MPI COMM WORLD, &status);
char myname[NAMELEN]; /* Local host name string */ — v (&y, /np, _ Y g, i b ’ ) ;

printf ("Process %d on host %s has elements”, i, hostname[i]);
for (j=0; j<LENGTH/np; j++) {
printf(" 34", y[jl);

char hostname[MAXPROC] [NAMELEN]; /* Received host names */

int x[LENGTH]; /* Send buffer */ }
1 o * 1 *
int y[LENGTH]; /* Receive buffer */ print£("\n");
MPI Init(&argc, &argv); /* Initialize MPI */ }
MPI_Comm size(MPI_COMM WORLD, &np); /* Get nr of processes */ : " "y .
MPI_Comm_ rank (MPI_COMM_ WORLD, &me); /* Get own identifier */ printf("Ready\n”);
o * *
gethostname (&myname, NAMELEN) ; /* Get host name */ } else { /* all other processes do this */
i == * 1 *
if (me 0) { /* Process 0 does this */ /* Check sanity of the user */
] > 32 1=
/* Initialize the array x with values O .. LENGTH-1 */ lfMé?pF?ﬁziigg(l! P 9 A
for (i=0; i<LENGTH; i++) { .~ !
x[i] = i; exit (0);
} }

/* Receive the scattered array from process 0, place it in array y */

MPI Scatter(&x, LENGTH/np, MPI_ INT, &y, LENGTH/np, MPI_ INT, root, \
MPI_COMM WORLD) ;

/* Send own name back to process 0 */

/* Check that we have an even number of processes and at most MAXPROC */
if (np>MAXPROC || np%2 != 0) {
printf("You have to use an even np (at most %d)\n", MAXPROC);

zziEan?llze(); MPI_Send (&myname, NAMELEN, MPI_CHAR, O, nametag, MPI_COMM WORLD);
} (0); /* Send the received array back to process 0 */
MPI_Send (&y, LENGTH/np, MPI_INT, O, datatag, MPI_COMM WORLD);

printf("P %d on host %s is distributing array x to all %d processes\n\n", }
me, myname, np);

MPI Finalize();

* 1 1 *
/* Scatter the array x to all proceses, place it in y */ exit (0);

MPI Scatter(&x, LENGTH/np, MPI_ INT, &y, LENGTH/np, MPI_ INT, root, \ }
MPI_COMM WORLD) ;

/* Print out own portion of the scattered array */

printf ("Process %d on host %s has elements", me, myname);



bool push(void *const data) {
unsigned long pw, seq;
element_t * node;
unsigned long bk = BACKOFF_MIN;
do {
pw = pwrite.load(std: :memory_order_relaxed);
node = &buf[pw & mask];
seq = hode->seq.load(std: :memory_order_acquire);
1t (pw == seq) { // CAS
1t (pwrite.compare_exchange_weak(pw, pw+l, std

break;
for(volatile unsigned 1=0;1<bk;++1) ;
bk <<= 1;
bk &= BACKOFF_MAX;
1 else
1f (pw > seq) return false; // queue full
} while(l);

node->data = data;

node->seq.store(seg+l,std: :memory_order_release);
return true;

CAS &
memory consistency

. :memory_order_relaxed))



__global__ void kernell(int *lock, int *x) {

unsigned int i1dx = blockIdx.x * blockDim.x + threadIdx.x;
do {
//nop

} whileCatomicCAS(lock, @, 1)); Deadl()Ck

//critical region
*lock = 0;
¥

__global__ void kernel2(int *var, int *x) {
unsigned int 1dx = blockIdx.x * blockDim.x + threadIdx.x;
int oldval, newval = 0;

do {
oldval = *var; //read shared var WOI‘I(S?

//critical region

newval = oldval + 1; // f(oldval)
} whileCatomicCAS(var, oldval, newval) != oldval);
x[1dx] = newval;

¥

+ Deadlock on GPGPU (unless nvcce -QG).

+ A different execution model. Impossible to make any assumptions about scheduling

+ Data-dependency can be managed only via lock-free algorithms



Message-passing (e.g. MPL
Shared-memory (e.g. threads + mutex/CAS

+ (Can be) Efficient

* Available in almost all platforms .

+ Often the only access to net, e.g. HRLS Cray XE6 Hermit: 32 x 3552 nodes = 113 664 cores

+ De-facto standards, used for decades

Lot of

+ Parallel primitives fully inter-waived with business code freedom

+* How compose “computing phases”, “SW modules” ...

+ Parallel behaviour and data layout not explicit in the code. Primitives often do not compose.

<

+ Often to be coupled with shared-memory for intra-node

+ e.g. MPI & Pthreads, MPI & OpenMP, PGAS-MPI & OpenCL, ...
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Unstructured
programming
considered harmtul

Edgar Dijkstra: Go To Statement Considered Harmful
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L.oop parallelism helps

* OpenMP is great example

+ It simply works well on loops

* Not really usetul for all problems

+ Tasks, Graphes, ...

Cholesky (Tile 5)
Courtesy: J. Dongarra
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Programmings model

1S paramount

DOI:10.1145/1562764.1562783

Writing programs that scale with increasing
numbers of cores should be as easy as writing
programs for sequential computers.

BY KRSTE ASANOVIC, RASTISLAV BODIK, JAMES DEMMEL,
TONY KEAVENY, KURT KEUTZER, JOHN KUBIATOWICZ,
NELSON MORGAN, DAVID PATTERSON, KOUSHIK SEN,

JOHN WAWRZYNEK, DAVID WESSEL, AND KATHERINE YELICK

Applications Hardware
Tengion between
1. What are the Em & Server 3. What are the
applications? hardware
building blocks?
2. What are L \/ 1 i v

connect them?

common

kemels of the Programming Models

5. How to describe applications and

applications?
kernels?

6. How to program the hardware?

Evaluation:
7. How to measure success?

Figure 1. A view from Berkeley: seven critical questions for 21¥ Century parallel computing.

(This figure is inspired by a view of the Golden Gate Bridge from Berkeley.)
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And 1t 1s paramount also at the large scale

The Abstract Machine Model & Execution Model

L L

Memory Memory Memory Memory Memory

* A computer language is not a programming model *

— “C++ is not scalable to exascale”

* A communication library is not a programming model
— “MPI won’t scale to exascale”

* A unique application inventory response...
— Should we be talking “Execution Model”?

* What is a programming model?

Thought: real issue is mapping science problem to execution

model and run-time system

Courtesy: P. Beckman, Director, Exascale Technology, ANL

Coarse grain concurrency 1s
nearly exhausted

Often, it is not about FLOPS,
it is about data movement

* Programming systems should be
designed to support fast data
movement and enforce locality

* Variable coherency & inter-
socket messaging

15



Fxcerpts

MPI], the current dominant programming model for parallel scientific
programming, forces coders to be aware of the exact mapping of
computational tasks to processors. This style has been recognised for years to
increase the cognitive load on programmers, and has persisted primarily

because it is expressive and delivers the best performance. [Snir et al 1998]
|Gursoy and Kale 2004]

Because we anticipate a massive increase in exploitable concurrency, we believe
that this model will break down in the near future, as programmers have to
explicitly deal with decomposing data, mapping tasks, and performing
synchronisation over thousands of processing elements. [ Asanovic et al 2006

16



Abstraction (D. Reed

“To date, attempts to develop higher level programming
abstractions, tools and environments for HPC have

largely failed.

There are many reasons for this failure, but I believe
many are rooted in our excessive focus on hardware
performance measures.

By definition, the raison d’étre for high-performance
computing is high performance, but FLOPS need not be
the only measure.

Human productivity, total cost and time to solution are
equally, if not more important.”
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Low-level programming models: assessment

+ Efficient (can be) and widely supported

* Not likely to scale to mainstream (industrial) development
* Not compositional

+ Parallel behaviour not explicit (can be hard to catch)

* At the bottom line, higher-level “mental” overlays are already there

* In the mind of designers (i.e. data organisation, partition, data patterns, ...)

18



Programming model: my wish list

+* Should enforce to think to problems in parallel & and at high-level of abstraction

+ Clear semantics: functional and extra-functional (parallel), describing collective behaviours

+ Trading memory coherency for power, and power for parallelism should be a matter of the
implementation

* Should support containment and composition

+ At large scale: clear fault model with containment & recovery

* Should integrate synchronisation/communication with scheduling

+ Weak execution model rather than per device. Multicore, GPGPUs, distributed with an unifying vision

+ System programmers should use the techniques they advocate

19



An alternative

mobility approach




Skeletons and Patterns

* From HPC community * From SW engineering community

+ Started in early "90 + Started in early ‘00
(M. Cole’s PhD thesis)

+ Pre-defined parallel higher-order + “Recipes” to handle parallelism
functions, exposed to (name, problem, algorithms,
programmers as constructs/lib solutions, ...)
calls

Algorithmic Skeletons Parallel Design Patterns

21



Evolution of the concept

* Complex patterns, no composition
e Targeting clusters

e Mostly libraries (run-time system)

e Simple data/stream parallel patterns
e Compositional patterns, targeting COW /NOW
e Libraries + first compilers

e Optimised, compositional building blocks
e Targeting cluster of heterogeneous multicore + GPGPU
* Quite complex tool chain (compiler + run-time system)

22



Evolution of the concept

e Cole PhD thesis skeletons
e P3L (Pisa), SkiE (QSW /Pisa)
e SCL (Imperial college London)

e Lithium/Muskel (Pisa), Skandium (INRIA)
e Muesli (Muenster), SkeTo (Tokio)
e OSL (Orleans), Mallba (La Laguna), Skipper

e SkePu (Linkoping)
e FastFlow (Pisa/Torino)
* Intel/TBB/CnC (?), Microsoft/TPL (?), Google/MapReduce (?), ...

23



PATTERNS
FOR PARALLEL
PROGRAMMING

Parallel Design Patterns

: : Decomposition (task, data) e —
Fmdmg s it Dependency analysis (group, tasks, order tasks, data sharing)
- & : : Organise by task (task parallelism, Divide&Conquer)
Par a"el DeSIQ n Algor ithmic Space Organise by data (geometric, stencil, recursive) or data flows (pipeline, events)
patter ns \ : Program structure (SPMD, master-worker, loop parallelism, fork/join)
Suppor tmg structure Data structures (shared data, shared queues, distributed arrays)
\ Implementation Synchronisation, communication, process management

Problem Low-level code

App developer

Programming tools

24



Algorithmie skeletons

Map, Reduce, Stencil ...
Divide&Conquer, Pool, MDF, ...

Pipeline, farm, ...

Problem

App developer

Algorithmic
Skeleton
library

X X

runtime support

Systewm developer

High-level code

25



STRUCTURED
PARALLEL PROGRAMMING

An Introduction

M. Danelutto
.........

Structured parallel programming

Parallel Design Algorithmic

supporting structure and

implementation mechanisms
Systewm developer

Flexible
high-level code

Problem

App developer

Programming tools

26



MapReduce

a success story

Innovative implementation

(even if theoretically an
instance of Map-+Reduce)

Pl Algwaton and Apptngrnns P Mo V10 W1 AWA fnmemw AR Sas Apmmmwnn, WY

o s 0w B bwey v W sl L N Y e
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TOWARDS PARALLEL PROGRAMMING
BY TRANSFORMATION: THE FAN
SKELETON FRAMEWORK*®

FAN progrars obey the ang
defning each vanable All M ALDINUCCE, S GORLATCHY, C LENGALER"
m Ihe peogram’s body. Each ¢ i 5. PELAGATTY

Expressom (s) cas be con "Dparsomenie & Mformatcn. Unversne & Pow. 8 Corse el
Tenction apphcatson of ske F36128 Poa. baly, “Fabsivar far Machomork snd Informani
MR, rduce, ok Unsorrsitie Pastow. D000 Patsin Gevenary

emilniee|dne|bsee Exel & .

£y = Map | map, | educe | soanl.  Copy | 10M | pan | reamange
£; = pair | peoyd

£y » loogfor | nopwivla | boprapem

The soope of eath varubie Sefinnon catends across oll sudseguest
defmitions w the same Sody. At the end of the bady, we can pecdy local
defmitions wang 2 whare clause. Names of FAN programs can be wsed »»
Fancton in cxprouviom

inner.product (in a,b : Array n Scalar, out ¢ : Scalar)

t = map (*) (pair (a.b));
¢ = reduce (+) t;

o)

FIGURE | A FAN program to compute the inner product of two vectors.




Patterns are natural

for GPGPUSs

Courtesy: J. Owen, UC Davis

Think In Parallel

@ The GPU is a data-parallel processor
@ Thousands of parallel threads
@ Thousands of data elements to process

@ All data processed by the same program
@ SPMD computation model

@ Contrast with task parallelism and ILP

@ Best results when you “Think Data Parallel”
@ Design your algorithm for data-parallelism
@ Understand parallel algorithmic complexity and efficiency
@ Use data-parallel algorithmic primitives as building blocks

N

S05: High Performance Computing with CUDA 7 8@@7

i 5607

CVOA. A Metaragerann Paialel ™ [t R
. - S05: High Performance Computing with CUDA
Bary e Lomgatng
Data-parallel Algorithms &

ADeY w1 Data Structures

» John Owens
UC Davis

Data-Parallel Algorithms

@ Efficient algorithms require efficient building blocks
@ This talk: data-parallel building blocks
¥ Map
@ Gather & Scatter

@ Reduce
¥ Scan

N

7
S05: High Performance Computing with CUDA 8 8@'«:‘7




Maybe also on FPGA

Courtesy: A. Koch, TU Darmstadt

@’ d NNy ol

QG REPARA EU- STREP FP7 (2013-2016)

Q\D
Role of FPGA in FastFlow

» FPGA can act as entire FastFlow subgraph

Farm/Worker Skeleton

Copy to
Host

-Or®

Data I‘-’Iover
on FPGA

Data Mover
on FPGA

\ l
!

Pipeline Skeleton

12 REPARA -WP5 Reconfigurable Hardware




Assessment

Separation of
concerns

Inversion of
control

Performance

* Application programmer: what to do
e System programmer: how to make it in parallel

* Structure suggested by programmer - no idiom recognition
* Clear functional and parallel semantics

* Close to hand tuned code (better for not expert programmers)
* Reduced development time. Gracetul tuning curve.

30



Fastklow (K )

FastFlow

| I

Parallel applications
efficient and portable

High-level patterns
parallel_for, parallel _forReduce, ...

Core patterns

pipeline, farm, feedback

Building blocks
queues, ff_node, ...

CUDA] OpenCL

TCP/IP
IB/OFED

\
—~
-

- Multicore and many-core platforms

\‘:
~ I - | W
> JLlustersof multicore +many=core 3




Building blocks L

f process 7 N\

| AN /h\ N
, -
\ ol N\
> <\ N7 N A
\ / | / | / : )
y Mo 1y n \\ 1 \
"—PO—D. \ i S Z’ S ,
\ g ( - \\ // \\
‘\ sA// N\ /I | /
channel name channel name \ \ \ D ,L—’ / ,
or channel or channel
channel O\A channel l
names . name
,Q/V or channel
mi-node network
channel name channel name SAMITETIE
or channel GEl or channel or asymmetric dlStr J.buted
node (scatter, gather, etc) node
channel channel
name names
or channel
mo-node
non-blocking threads , process of nonblocking threads
, , nonblocking thread L
(can switch to blocking at GPU / accelerat distributed zero-copy
! accelerators .
runtime by way of a TCP/IP, OFED/IB, MPI (ongoing),
(OpenCL, CUDA)

a native protocol) HW /SW PGAS (ongoing)
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Building blocks
Everything 1s SPSC (in the shared-memory)

—[[1[~ + Enough to support producer-consumer
FF bound shmem FIFO channel
Single-Producer-Single-Consumer + Inherently weaker w.r.t. mutual exclusion

lock-free fence-free queue

*  Weaker execution model requirements

@ +*  Mutex not really possible on SIMT model (GPU)

FF unbound shmem FIFO channel

. . 22 i _
Single-Producer-Single-Consumer Mutex requires memory-fences and leverages on

lock-free fence-free queue (expensive) cache coherency on multicore
>« + Deadlock is cyclic networks avoided via unbound
Distributed zero-copy channel queue (Wait-fI'QQ)

OMQ/TCP or native IB/OFED
+ M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, M. Torquati. An

shmem channels communicate efficient unbounded lock-free queue for multi-core systems. Euro-Par

2012, LNCN 7484, 2012.

pointers in a message passing style -



(Queues: performance

Shared-memory

Xeon E/-4820 @2.0GHz Sandy Bridge

45 . . 1
same core, different context m—
40 different cores, same CPU mmwmm -
35 | different CPUs mm—
&L 30
-
8 25+
()]
S 20+
-
S 15}
10 +
5 |
0
| 64 1024 8192
| buffer size

=  MVAPICH (shmem) ~ 190ns

<« Faster and more scalable than
CAS/test-and-set implementation

Distributed
Message size | ib_write_bw MPI FastFlow | FastFlow/ZMQ
(bytes) (Mb/s) | (Mb/s) | /IB (Mb/s) /IPoIB (Mb/s)
10 300 192 129 0.7
100 3,600 1,816 1,300 7.0
1,024 22,900 | 13,936 10,591 70.0
5,000 25,200 | 23,880 19,761 300.0
10,000 25,500 | 25,128 20,479 500.0
25,000 25,700 | 12,408 20,051 1,100.0
50,000 25,800 | 16,232 21,019 1,950.0
65,536 22900 | 17,472 20,889 1,980.0
200,000 25,800 | 21,208 21,211 3,800.0
400,000 25,800 | 22,532 21,226 6,200.0

TABLE I: Comparing throughput of different implementations
of the unidirectional bandwidth test for several message sizes.

+ Comparable with MVAPICH (distributed)
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Core patterns

Streaming patterns: fast data movements + computation-to-core pinning

Full control of locality and memory atfinity

Fully compositional and deadlock-free (by construction)

Minimalistic run-time
Two patterns and one pattern-modifier: farm, pipeline and feedback

Configurable scheduling and gathering policies and implementations

Full expressivity

Enough to build higher-level abstraction: Master-worker, D&C, Map, Reduce, Pool, Stencil, ...
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Core patterns: farm, pipeline, feedback
+ Nonblocking/blocking, dynamic/static scheduling, F/C. policy configuration, core pinning

=

U
farm with
master farm with . farm of GPU
in-memory
worker feedback . nodes
scheduling
>
pipeline
O~@=@ | OO0 OO0 ...
pipeline with feedback

\ 4

pipeline with GPU nodes




Core patterns can be arbitrarily composed

pipe(farm(s),farm(s farm(pipe(s1,s2)) farm(farm(s))
@"’@/1 s
pipe(farm(s),farm(s |OOpback) vipe(s1 farm(s2)) \Cg
Gi< ; (/:rf) @—»ﬁ
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Master-worker (0.5 uS workload

— |deal O POSIX lock

O CAS

2 3 4 5 6

Number of Cores
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Master-worker (5 uS workload)

— Ideal O POSIXlock ©O CAS {F FastFlow
8

]

| |
O 6 ﬂ .
- ‘ ) .
-SU):); 4 / ]
@ @ @ ’ /

0

2 3 4 | | 7 8

Number of Cores
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Master-worker (5 uS workload
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(ore patterns: a programming model

+* A low/medium-level data-centric programming model

+* Concurrent computation modelled as a (cyclic) graph
* Nodes are parallel activities. Edges are true data dependencies

* Synchronisation are messages, data can be moved as messages or shared memory

+ Can be realised with or without coherency, in shared-memory, distributed, PGAS, ...

+* Not exactly a Kahn’s net, more a CSP-actor hybrid model

+* Processes are named and the data paths between processes are identified
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High-level patterns

* Address application needs
+ Loop parallelism (OpenMP fashion)
“+ Parallel-For, Parallel-For-Reduce
+ Data Parallelism
+ Stencil, Stencil-Reduce, Map, MapReduce (pipelined)
+ Task & Stream

+* Pool (e.g. genetic alg.), Macro-Data-Flow (e.g. linear algebra, dynamic programming, ...)

*  Farm, Pipeline

+ Implementation-wise, just OO extensions of composition of core patterns
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High-level patterns

* Think in parallel & high-level

+ Efficiency, portability, time-to-market

+ High-level parallel patterns

+ Describing collective behaviour

+ Can be: expressive, efficient, compositional

Autonomic management of non-functional concerns in distributed & parallel
application programming

Moo Addrscc Moo Danchuso Foer Kilpatrck

Oept Compader Sclence
U'wiversity of Torino

ODept. Compater Science
Usiversity of P

Dept. Compader Scrence
COureen s Usive ity of Relan

Toving - Baly Fiss ~ Daly Bediomt ~ UK

SV A& amito ¥

Abstract

An appvoach v e mamgpermest of sonfascHone
Oomcerns m mssively paraliel andr anbeied o
AlrcTwws thar marnies paralel progromaming paternu
with aatonomss computng & presented. The seceanity
ond neaehlay of A adopaiom of el v iigaes s
aw rvidnced Toaser arising n e dmplemrasion of
aeionomk: managvry fabing care of maltple comceru
nd of coonlination among MerarcAies of sch ol
BAC ey s Aot Pgwrismensal vsai
o prvamnind ther desovutray e franbiey of e
Fynat
Keyvords: sctooomc maragemens, alponom wkele-

marvod W & aegp &

prpart® gud o ak

factonal conoeres ae those (oacerns et Srectly
rdsted 1o the rosak computad By an appication, bt
raher 0 the way this reaul o commputod Eaarmpics
of soofeactimal conderm adiude porformance, s
oury, Teeh sderance. Manugoment of sch Qos0ems
wsally mguires exivasiww Kaowiodae of e tarpet ex-
cuton covponmment and appropniate infcractos wih
e fuscoons) code of Be sppixatioe. Noofencbosal
Concers masagement bocornes ncreasiagly complicen
e tapet srchiloctoe becommes moee and more Oy
st And dettropescoous, and the foatures of e Lapet
CRCUOn eoviroamen are progressovely haddes from
O appication programesy (moving Do clastery o
“oviadle gidh” [6] and from g %0 cloads ). This seg-

programming. IPDPS, 2009. IEEE.

+*  Multicore, GPGPUs, distributed with an unifying vision

* Thanks to clear semantics, can be autonomically reconfigured

+ not discussed in this talk - see ParaPhrase EU STREP FP7 project

M. Aldinucci, M. Danelutto, F Kilpatrick. Autonomic management of
non-functional concerns in distributed and parallel application
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Example: parallel for

// FastFlow (--std=c++11) 1 // OpenMP (-fopenmp)
ff::ParallelFor pf; #pragma omp parallel for num threads(nworkers)
pf.parallel for(OL,N, &A(const long i for(long 1=0;1i<N;++1
Al - Ai -
nworkers ) .

+ Currently a method call on a C++11 Lambda function (loop body)

+ All other high-level patterns in the same style

+* Moving to C++11 generalised attribute syntax (N2761)
+ Within REPARA EU-FP7 STREP project €REPARA

[[ff::target(ff::cpu,ff::gpu), ff::1input(A), ff::output(A), ..1]
forC 5 5 53 ) 4 .1}

A




Applications

Stream: Sequence Alignment Tools
Tasks: Linear Algebra
Data: Image Filtering

System programmers should use the techniques they
advocate: memory allocation




Stream: Bowtie (B'T) and BWA

sequence alignment tools

32

BT12.0-FF

28

24 |

Shared-Memory affinity scheduling Memory
input implemented via input/output
Y (Reads, Genome) scheduler thread (active) (Reads, Alignment) F?StFIOWk
threads - - .. = . or lock-free scheduler master-worker
) .../ mutex \ object (passive)
Mteargcl:ry B Mteans](k)ry core-pinned lock-free
(Read) (Read) worker thr eads.. . _. synchronisations
______ - (mutex) Memory Memory
Required in some tools =~~~ | task task
(Bowtie2=yes, BWA=no) Shared-Memory output (Read) (Read)

20 +

BT2.0
BT12.2

(Alignment)

AN 4

Shared-Memory
interleaved and read-only
(Alignment)

Top tools for parallel DNA + FastFlow master-worker

alignment o . o
+ Memory affinity, pinning, atfinity

scheduling (embedded in the
pattern)

Hand-tuned C/C++/SSE2 code

Spin locks + Pthreads
+ BT: up to 200% speedup

BWA: up to 10% speedup
over originals

Sequences (reads) are streamed from
MMIO files to workers

Memory bound

16 |

Speedup

A e A e

12 ¢

|
|
|
!
|
|
{
|
|
|
|
l
|
|
|
|

oo
-

N,

|
ol
: |
o
-

|
s
)
0%
L
Xl
b

ST R R R R

SRR0O78586  SRR502198  SRR027963

Dataset

oo

C. Misale, G. Ferrero, M. Torquati, M. Aldinucci.
Sequence alignment tools: one parallel pattern
to rule them all?

BioMed Research International, 2014. 3



Graphs of tasks
.U and Cholesky

+ Macro-Data-Flow (MDF) pattern encoding
dependence DAG

+ pipeline(TaskGen, farm(TaskExec))
+ Configurable scheduling, affinity;, ...

+ Dynamic generation of the DAG

+ Comparable or faster than specialised linear
algebra frameworks (e.g. PLASMA)

+ MDF is general, can be used for a wide range of
applications, Dynamic Programming,
Divide&Conquer, ...

LU s:ze 8192 Nehalem 32 cores

" ffMDF —

100 -\ o PLASMA-S —»— ***** =_ 30
-\ PLASMA-D —=—  .*" j
ideal speedup - s
(%) - P b " o h 2O
> Ve
&
n ]
(@) :
ks 1 20
,'\ Q.
n ; 5
o 115 @
& o
= | “ B
Q
s 10r 1 10
() - ]
0p) ]
45
| | | | | | | | | | | | | | | 0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
FF’s workers / PLASMA'’s threads
Cho/esky s:ze 8192, Nehalem 32 cores
100 — .
L r #MDF R
PLASMA-S —+— :
PLASMA-D —— . ]
ideal speedup - L ]
Qo e ehestR 1 30
cU ]
o
n
o o
o -~ { 20
- " S
)] |
E’ 10 | ] g
415 ¢
= - ] 7
= | y 0p
S 4 10
(D)
n : 3
oy -
1 .

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32
FF’s workers / PLASMA'’s threads

0
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Data Parallehism: Iwo-stage restoring

Noisy image Noise map Restored image

Denoise

N

+ progressive-switching/adaptive median + variational

+ neural /bayesian networks, fuzzy;, ... = statistic

+ Statistic detection + variational restoration
+ High quality, edge-preserving filtering
* Much more computational demanding, not really viable without parallelism
+ Matlab on a single 256x256 image with 50% of noise requires dozen of minutes

+ Stages can be pipelined
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Eftective noise filtering (variational)

Salt-and Pepper, Gaussian, ...

Original 0% impulsive noise 50% impulsive noise 90% impulsive noise

Baboon standard

test image
1024x 1024

Restored

t o

PNSR 23.4 MAE | |.21

S . sd i

b a0 il 5 SN ol
PNSR 32.75dB MAE 2.67

PNSR 43.29dB MAE 0.35
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stream of independent
< frames, outlier_mask >

Denoise

Detect C++ or OpenCL business code

I
I
I
I
I
.
C++ business code - CPUs only, GPGPUs only
CPUs only CPUs+GPGPUs

Alternative Alternative

deployments - deployments for
each worker W

FastFlow node FastFlow node FastFlow farm 7

: FastFlow stencil-reduce [ : (on independent frames) y

stencil reduce

/\ O Sequential
C++ on CPU

@® Sequential @ Paralle]

@ Parallel -
C++on CPU
il C++on CPUs OpenCL on GPUs FastFlow node

® Parallel O—)
OpenCL on CPUs O Parallel

_T—' OpenCL on CPUs

———

FastFlow
stencil-reduce
(on partitions of a

single frame)
| |

el

stencil reduce

M. Aldinucci, M. Torquati, M. Drocco, G. Peretti Pezzi, and C.
Spampinato. Fastflow: Combining pattern-level abstraction and ® Parallel O Parallel ® Parallel

efficiency in GPGPUs. GTC 2014, San Jose, CA, USA, 2014 C++ on CPUs OpenCL on GPUs OpenCL on CPUs and GPUs .



using namespoce ff)

templatectyperome DendiserCUDALAseType, typenase Denolser{UDAscF>
closs cudsDenoiserAdUTO: public Demolser, public FRSTENCILREDUCECUDAL Denoi serCUDALasAType, DenoiserClDAscoF, reduceF) {
publics
cudalDenci serAUTOCvo L d *kernel _porams_, unsigned 1ot height, umsigred int width, bool Flasd cycles, wniigned (mt max_Cycles,
ool trace tise) :
werrel poroms(kervel poroms ),
FFSTENCILREDUCEQUOAL Demo L serCUDAL oSk Type, DemnoliserlUDAROF , reducef )(max_cycles),
PeroLser(height, fined cycles, mos _cycles, troce time) {

}

void *swe(veid *) (
((Gomoise _task *Jt)oakerrel 2oroms « kervel paroms)
((Geroise _tosk *)-»Tixed cycles = filaed cycles;

return Denotser: 1swelt): Stencil-Reduce

} pattern init

veid sve_end) ()

wsignes Int restoreunsigned chor *1m, unsigned cher %out, 1M *noisymsp, nsigned 1t *solsy, uwsigned \nt A _solsy, wid
*tosk) {

walgred int Relght « this->height;

iigoed int width « this-cwideh;

sencpy(out, in, height * sidth * sisecf(uraigred cther)),

FESTENCILREDUCECLOA{ DenciserCUDAR s Type, DentiserOU0AnanF , reduceF): swo(tast),;
returs thisogetiter();
}

privote:

) void *kermel_paroms; Stencil-Reduce
Pendif /* CUDADENDISERMUTO HPP_ */ pattern run
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Performance (CPUs + GPGPUs)

Video frames 768xH12

Nehalem 32 cores + 1 K20

B 32 cores + K20 B 32 core

40

30

FPS

20

10

0
S&P 10% S&P 50% Gauss V10 Gauss V100

SandyBridge 16 cores + 2 Tesla M2090

B 16 cores + 2xM2090 B 16 cores + 1xM2090 16 cores

FPS

40

30

20

10

0

S&P 10%

S&P 50%

no difference w.r.t. hand-written CUDA code

Gauss V10 Gauss V100
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Parallel memory allocation (lock-free)

new(B)
new(C)
delete(B) elete
_@_)( new(A) é elete
‘ new(C) ’
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Parallel memory allocation (lock-free)

delete(B)
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Parallel memory allocation (lock-free)
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Parallel memory allocation (lock-free)

7
n

%m = A network that connects data
new(C)
—>\  \ allocations-deallocations paths
o SN
— > dﬁgﬁi ”gg::::gg;)-@ + Faster than posix, often faster
B e S than hoard and TBB

(3 -

FF allocator new(C)

+ unpublished, code available on
sourceforge

+* Implements deferred deallocation
to avoid ABA problem
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Producer P:
for(1=0;1<10M;i++){

pl = malloc(rnd(size)); D—@’
*pi=...; //’

uSPSC queue uSPSC queue

_)- FFaIIoc

’———e' !
~ W

--free

‘\

/
dispatch RR pi; . [ o
) : .
. ° ma},lle)c-!...~ y
.. FFalloc _ 'y FFalloc "'; ...---free

\-&.—;( 4. FFalloc

Consumer Ci:

while (pi=get())
do work(lps,pl);
free(pi);

N _\.. FFaIIOC

@
@

10M alloc/dealloc (32B) - 1us tasks - 32-core Intel E7 2Ghz
1 4 1 1 1 1 1 1

—— Hoard-3.9
B —— libc-6
_ —— TBB-4.0
——— FastFlow
oryr |deal -
« 8ry 4 Jf XAV -
£
i: 6 I N\ A g e T 4
4 L N T e T ]
S N :
O 1 1 1 1 1 1 1 1

N. of (dealloc) threads

4\

\\\—” ‘v

\ -free

‘\

[}
-y o ‘ I/
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Conclusion

Low-level approach for a better performance/scalability

It is already a myth, a medium scale. Does someone still believe assembler is faster than C++7?

Not proved, but we believe it will be even more evident at the large scale (exa-scale)

FastFlow: header-only C++11 library

Research framework, portable everywhere exists a C++11 compiler, tiny codebase

Efficient, scalable

A data-centric parallel programming model is paramount

High-level with a clear parallel semantics, compositional, enhancing locality and fast data
movements
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