
HPCC keynote talk, Paris, France. Aug 20, 2014

Parallel patterns, data-centric concurrency, and
heterogeneous computing
Marco Aldinucci, University of Torino, Computer Science Department

1

Outline

✤ Parallel patterns and structured parallel programming!
✤ On the hierarchy of abstractions for parallel programming!

✤ Data-centric concurrency!
✤ FastFlow: a data-centric run-time support for heterogenous platforms!

✤ Applications !
✤ With FastFlow and other frameworks!

✤ … and lot of cars
2

MPI
 is like a car, you can drive it as you like

MPI-3

3

MPI, threads, HW-CAS spinlocks, …
are like cars, you can drive it as you like

MPI-3

THREAD

HW CAS!
 LOCK!
 FREE

4

#include <stdio.h>!
#include "mpi.h"!
#define MAXPROC 8 /* Max number of procsses */!
#define NAMELEN 80 /* Max length of machine name */!
#define LENGTH 24 /* Lengt of send buffer is divisible by 2, 4, 6 and 8 */!
!
main(int argc, char* argv[]) {!
 int i, j, np, me;!
 const int nametag = 42; /* Tag value for sending name */!
 const int datatag = 43; /* Tag value for sending data */!
 const int root = 0; /* Root process in scatter */!
 MPI_Status status; /* Status object for receive */!
!
 char myname[NAMELEN]; /* Local host name string */!
 char hostname[MAXPROC][NAMELEN]; /* Received host names */!
!
 int x[LENGTH]; /* Send buffer */!
 int y[LENGTH]; /* Receive buffer */!
!
 MPI_Init(&argc, &argv); /* Initialize MPI */!
 MPI_Comm_size(MPI_COMM_WORLD, &np); /* Get nr of processes */!
 MPI_Comm_rank(MPI_COMM_WORLD, &me); /* Get own identifier */!
 !
 gethostname(&myname, NAMELEN); /* Get host name */!
!
 if (me == 0) { /* Process 0 does this */!
 !
 /* Initialize the array x with values 0 .. LENGTH-1 */!
 for (i=0; i<LENGTH; i++) {!
 x[i] = i;!
 }!
!
 /* Check that we have an even number of processes and at most MAXPROC */!
 if (np>MAXPROC || np%2 != 0) {!
 printf("You have to use an even np (at most %d)\n", MAXPROC);!
 MPI_Finalize();!
 exit(0);!
 }!
!
 printf("P %d on host %s is distributing array x to all %d processes\n\n", !
! me, myname, np);!
!
 /* Scatter the array x to all proceses, place it in y */!
 MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \!
! ! MPI_COMM_WORLD);!
!
 /* Print out own portion of the scattered array */!
 printf("Process %d on host %s has elements", me, myname);!

 for (i=0; i<LENGTH/np; i++) {!
 printf(" %d", y[i]);!
 }!
 printf("\n");!
!
 /* Receive messages with hostname and the scattered data */!
 /* from all other processes */!
 for (i=1; i<np; i++) {!
 MPI_Recv (&hostname[i], NAMELEN, MPI_CHAR, i, nametag, !
! MPI_COMM_WORLD, ! &status);!
 MPI_Recv (&y, LENGTH/np, MPI_INT, i, datatag, MPI_COMM_WORLD, &status);!
 printf("Process %d on host %s has elements", i, hostname[i]);!
 for (j=0; j<LENGTH/np; j++) {!
! printf(" %d", y[j]);!
 }!
 printf("\n");!
 }!
 !
 printf("Ready\n");!
!
!
 } else { /* all other processes do this */!
!
 /* Check sanity of the user */!
 if (np>MAXPROC || np%2 != 0) {!
 MPI_Finalize();!
 exit(0);!
 }!
!
 /* Receive the scattered array from process 0, place it in array y */!
 MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \!
! MPI_COMM_WORLD);!
 /* Send own name back to process 0 */!
 MPI_Send (&myname, NAMELEN, MPI_CHAR, 0, nametag, MPI_COMM_WORLD);!
 /* Send the received array back to process 0 */!
 MPI_Send (&y, LENGTH/np, MPI_INT, 0, datatag, MPI_COMM_WORLD);!
!
 }!
!
 MPI_Finalize();!
 exit(0);!
}!

5

bool push(void *const data) {	
	 unsigned long pw, seq;	
	 	 element_t * node;	
	 	 unsigned long bk = BACKOFF_MIN;	
	 	 do {	
	 	 	 	 pw = pwrite.load(std::memory_order_relaxed);	
	 	 	 	 node = &buf[pw & mask];	
	 	 	 	 seq = node->seq.load(std::memory_order_acquire);	
	 	 	 	 if (pw == seq) { // CAS	
	 	 	 	 	 if (pwrite.compare_exchange_weak(pw, pw+1, std::memory_order_relaxed))	
	 	 	 	 	 	 break;	
	 	 	 	 	 for(volatile unsigned i=0;i<bk;++i) ;	
	 	 	 	 	 bk <<= 1;	
	 	 	 	 	 bk &= BACKOFF_MAX;	
	 	 	 	 } else	
	 	 	 	 	 if (pw > seq) return false; // queue full	
	 	 } while(1);	
	 	 node->data = data;	
	 	 node->seq.store(seq+1,std::memory_order_release);	
	 	 return true;	
}

CAS &!
memory consistency

6

✤ Deadlock on GPGPU (unless nvcc -G).!

✤ A different execution model. Impossible to make any assumptions about scheduling!

✤ Data-dependency can be managed only via lock-free algorithms

__global__ void kernel1(int *lock, int *x) {	
 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;	
 do {	
 //nop	
 } while(atomicCAS(lock, 0, 1));	
 //critical region 	
 *lock = 0;	
}	

__global__ void kernel2(int *var, int *x) {	
 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;	
 int oldval, newval = 0;	
 do {	
 oldval = *var; //read shared var	
 //critical region	
 newval = oldval + 1; // f(oldval)	
 } while(atomicCAS(var, oldval, newval) != oldval);	
 x[idx] = newval;	
}

Deadlock

Works?

7

Message-passing (e.g. MPI)
Shared-memory (e.g. threads + mutex/CAS)
✤ (Can be) Efficient!

✤ Available in almost all platforms!
✤ Often the only access to net, e.g. HRLS Cray XE6 Hermit: 32 x 3552 nodes = 113 664 cores!
✤ De-facto standards, used for decades!

✤ Parallel primitives fully inter-waived with business code !

✤ How compose “computing phases”, “SW modules” … !
✤ Parallel behaviour and data layout not explicit in the code. Primitives often do not compose.!

✤ Often to be coupled with shared-memory for intra-node !
✤ e.g. MPI & Pthreads, MPI & OpenMP, PGAS-MPI & OpenCL, …

Lot of
 freedom

?

?

8

01

I ♥ MPI
I ♥ threads
No whiners

9

01

Unstructured
programming
considered harmful

10

Val D’Orcia, Tuscany, Italy

Designer utopia

Car

11

False sharing Hot spots

Irregular data

Reality 12

Loop parallelism helps

✤ OpenMP is great example!
✤ It simply works well on loops!

✤ Not really useful for all problems !
✤ Tasks, Graphs, …

Cholesky (Tile 5)!
Courtesy: J. Dongarra

13

01

Programmings model
is paramount

56 COMMUNICATIONS OF THE ACM | OCTOBER 2009 | VOL. 52 | NO. 10

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 L
E

O
N

E
L

L
O

 C
A

LV
E

T
T

I

DOI:10.1145/1562764.1562783

Writing programs that scale with increasing
numbers of cores should be as easy as writing
programs for sequential computers.

BY KRSTE ASANOVIC, RASTISLAV BODIK, JAMES DEMMEL,
TONY KEAVENY, KURT KEUTZER, JOHN KUBIATOWICZ,
NELSON MORGAN, DAVID PATTERSON, KOUSHIK SEN,
JOHN WAWRZYNEK, DAVID WESSEL, AND KATHERINE YELICK

A View of
the Parallel
Computing
Landscape

technology advances to double per-
formance every 18 months. The im-
plicit hardware/software contract was
that increased transistor count and
power dissipation were OK as long
as architects maintained the existing
sequential programming model. This
contract led to innovations that were
inefficient in terms of transistors and
power (such as multiple instruction
issue, deep pipelines, out-of-order
execution, speculative execution,
and prefetching) but that increased
performance while preserving the se-
quential programming model.

The contract worked fine until we
hit the power limit a chip is able to
dissipate. Figure 1 reflects this abrupt
change, plotting the projected micro-
processor clock rates of the Interna-
tional Technology Roadmap for Semi-
conductors in 2005 and then again just
two years later.16 The 2005 prediction
was that clock rates should have ex-
ceeded 10GHz in 2008, topping 15GHz
in 2010. Note that Intel products are
today far below even the conservative
2007 prediction.

After crashing into the power wall,
architects were forced to find a new par-
adigm to sustain ever-increasing perfor-
mance. The industry decided the only
viable option was to replace the single
power-inefficient processor with many
efficient processors on the same chip.
The whole microprocessor industry
thus declared that its future was in par-
allel computing, with increasing num-
bers of processors, or cores, each tech-
nology generation every two years. This
style of chip was labeled a multicore mi-
croprocessor. Hence, the leap to mul-
ticore is not based on a breakthrough
in programming or architecture and
is actually a retreat from the more dif-
ficult task of building power-efficient,
high-clock-rate, single-core chips.5

Many startups have sold parallel
computers over the years, but all failed,
as programmers accustomed to con-
tinuous improvement in sequential
performance saw little need to explore
parallelism. Convex, Encore, Floating
Point Systems, Inmos, Kendall Square

INDUSTRY NEEDS HELP from the research community
to succeed in its recent dramatic shift to parallel
computing. Failure could jeopardize both the
IT industry and the portions of the economy
that depend on rapidly improving information
technology. Here, we review the issues and, as an
example, describe an integrated approach we’re
developing at the Parallel Computing Laboratory, or
Par Lab, to tackle the parallel challenge.

Over the past 60 years, the IT industry has improved
the cost-performance of sequential computing by
about 100 billion times overall.20 For most of the past
20 years, architects have used the rapidly increasing
transistor speed and budget made possible by silicon

And it is paramount also at the large scale

✤ Coarse grain concurrency is
nearly exhausted!

✤ Often, it is not about FLOPS,
it is about data movement!
✤ Programming systems should be

designed to support fast data
movement and enforce locality!

✤ Variable coherency & inter-
socket messaging

CompuDng$

The Abstract Machine Model & Execution Model

•  A$computer$languageisnotaprogramming$model$
–  “C++isnot$scalable$to$exascale”$
•  A$communica1on$libraryisnotaprogramming$model$
–  “MPI$won’t$scaletoexascale”$

•  A$unique$applica1on$inventory$response…$
–  Shouldwebe$talking$“Execu1on$Model”?$

• Whatisa$programming$model?$

Thought:(real(issue(is(mapping(science(problem(to(execu5on(
model(and(run75me(system(

Memory$

CompuDng$

Memory$

CompuDng$

Memory$

CompuDng$

Memory$

CompuDng$

Memory$

Courtesy: P. Beckman, Director, Exascale Technology, ANL 15

Excerpts

✤ MPI, the current dominant programming model for parallel scientific
programming, forces coders to be aware of the exact mapping of
computational tasks to processors. This style has been recognised for years to
increase the cognitive load on programmers, and has persisted primarily
because it is expressive and delivers the best performance. [Snir et al 1998]
[Gursoy and Kale 2004]!

✤ Because we anticipate a massive increase in exploitable concurrency, we believe
that this model will break down in the near future, as programmers have to
explicitly deal with decomposing data, mapping tasks, and performing
synchronisation over thousands of processing elements. [Asanovic et al 2006]

16

01

Abstraction (D. Reed)

“To date, attempts to develop higher level programming
abstractions, tools and environments for HPC have
largely failed. !

There are many reasons for this failure, but I believe
many are rooted in our excessive focus on hardware
performance measures. !

By definition, the raison d’être for high-performance
computing is high performance, but FLOPS need not be
the only measure. !

Human productivity, total cost and time to solution are
equally, if not more important.”

17

Low-level programming models: assessment

✤ Efficient (can be) and widely supported!

✤ Not likely to scale to mainstream (industrial) development !

✤ Not compositional!

✤ Parallel behaviour not explicit (can be hard to catch)!

✤ At the bottom line, higher-level “mental” overlays are already there!
✤ In the mind of designers (i.e. data organisation, partition, data patterns, …)

18

Programming model: my wish list

✤ Should enforce to think to problems in parallel & and at high-level of abstraction!
✤ Clear semantics: functional and extra-functional (parallel), describing collective behaviours!
✤ Trading memory coherency for power, and power for parallelism should be a matter of the

implementation!

✤ Should support containment and composition!
✤ At large scale: clear fault model with containment & recovery !

✤ Should integrate synchronisation/communication with scheduling!
✤ Weak execution model rather than per device. Multicore, GPGPUs, distributed with an unifying vision!

✤ System programmers should use the techniques they advocate
19

01

An alternative
mobility approach

Skeletons and Patterns

✤ From HPC community!

✤ Started in early ’90  
(M. Cole’s PhD thesis)!

✤ Pre-defined parallel higher-order
functions, exposed to
programmers as constructs/lib
calls!

✤ From SW engineering community!

✤ Started in early ‘00  

✤ “Recipes” to handle parallelism
(name, problem, algorithms,
solutions, …)

Algorithmic Skeletons Parallel Design Patterns
21

Evolution of the concept

‘90

‘00

‘10

• Complex patterns, no composition! !
• Targeting clusters!
• Mostly libraries (run-time system)

• Simple data/stream parallel patterns! !
• Compositional patterns, targeting COW/NOW!
• Libraries + first compilers

• Optimised, compositional building blocks!
• Targeting cluster of heterogeneous multicore + GPGPU!
• Quite complex tool chain (compiler + run-time system)

22

Evolution of the concept

‘90

‘00

‘10

• Cole PhD thesis skeletons!
• P3L (Pisa), SkiE (QSW/Pisa)!
• SCL (Imperial college London)

• Lithium/Muskel (Pisa), Skandium (INRIA)!
• Muesli (Muenster), SkeTo (Tokio)!
• OSL (Orleans), Mallba (La Laguna), Skipper!

• SkePu (Linkoping)!
• FastFlow (Pisa/Torino)!
• Intel/TBB/CnC (?), Microsoft/TPL (?), Google/MapReduce (?), …

23

Parallel Design Patterns

Parallel Design
Patterns

follow, learn, use

Problem

Programming tools

Low-level code

Finding concurrency

Algorithmic space

Supporting structure

Implementation

Decomposition (task, data)!
Dependency analysis (group, tasks, order tasks, data sharing)

Organise by task (task parallelism, Divide&Conquer)!
Organise by data (geometric, stencil, recursive) or data flows (pipeline, events)

Program structure (SPMD, master-worker, loop parallelism, fork/join)!
Data structures (shared data, shared queues, distributed arrays)

Synchronisation, communication, process management

App developer

24

Algorithmic skeletons

Problem

runtime support

Algorithmic
Skeleton
library

insta
ntiate

Data parallel

Task parallel

Stream parallel

Map, Reduce, Stencil …

Divide&Conquer, Pool, MDF, …

Pipeline, farm, …

compose

High-level code
App developer

System developer

25

Structured parallel programming

Flexible
high-level codeProblem

Programming tools

Parallel Design
Patterns

methodology!
to compose!

and extend insta
ntiate supporting structure and

implementation mechanisms

Algorithmic
Skeletons

App developer

System developer

26

01

MapReduce
a success story
Innovative implementation!
(even if theoretically an
instance of Map+Reduce)!

27

01

Patterns are natural
for GPGPUs

8
S05: High Performance Computing with CUDA

Data-Parallel AlgorithmsData-Parallel Algorithms

Efficient algorithms require efficient building blocks

This talk: data-parallel building blocks

Map

Gather & Scatter

Reduce

Scan

7
S05: High Performance Computing with CUDA

Think In ParallelThink In Parallel

The GPU is a data-parallel processor

Thousands of parallel threads

Thousands of data elements to process

All data processed by the same program

SPMD computation model

Contrast with task parallelism and ILP

Best results when you “Think Data Parallel”

Design your algorithm for data-parallelism

Understand parallel algorithmic complexity and efficiency

Use data-parallel algorithmic primitives as building blocks

S05: High Performance Computing with CUDA

Data-parallel Algorithms &Data-parallel Algorithms &

Data StructuresData Structures

John Owens

UC DavisCourtesy: J. Owen, UC Davis

28

01

Maybe also on FPGA
Role of FPGA in FastFlow

REPARA -WP5 Reconfigurable Hardware 12

!  FPGA can act as entire FastFlow subgraph

Farm/Worker Skeleton

Pipeline Skeleton

Copy to
FPGA

Copy to
Host

Data Mover
on FPGA

Data Mover
on FPGA

Courtesy: A. Koch, TU Darmstadt

REPARA EU- STREP FP7 (2013-2016)

29

• Application programmer: what to do!
• System programmer: how to make it in parallel

Assessment

Separation of
concerns

• Structure suggested by programmer - no idiom recognition !
• Clear functional and parallel semantics

Inversion of
control

• Close to hand tuned code (better for not expert programmers)!
• Reduced development time. Graceful tuning curve.Performance

30

01

FastFlow (FF)
and its data-centric run-time support

Core patterns
pipeline, farm, feedback

High-level patterns
parallel_for, parallel_forReduce, …

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

31

Building blocks

non-blocking threads!
(can switch to blocking at!

runtime by way of a!
a native protocol)

node
channel name

or channel
channel name

or channel

mi-node

channel
name

or channel

channel
names

. . .

mo-node

channel
names

channel
name

or channel

. . .

GPU

GPU
node

channel name
or channel

channel name
or channel

nonblocking thread!
GPU/accelerators!
(OpenCL, CUDA)

distributed
node

network
symmetric

or asymmetric
(scatter, gather, etc)

mo mi

n

n

n

process

process of nonblocking threads!
distributed zero-copy!

TCP/IP, OFED/IB, MPI (ongoing),!
HW/SW PGAS (ongoing) 32

Building blocks
Everything is SPSC (in the shared-memory)

✤ Enough to support producer-consumer!
✤ Inherently weaker w.r.t. mutual exclusion!
✤ Weaker execution model requirements!

✤ Mutex not really possible on SIMT model (GPU)!

✤ Mutex requires memory-fences and leverages on
(expensive) cache coherency on multicore!

✤ Deadlock is cyclic networks avoided via unbound
queue (wait-free)!
✤ M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, M. Torquati. An

efficient unbounded lock-free queue for multi-core systems. Euro-Par
2012, LNCN 7484, 2012.

shmem channels communicate!
pointers in a message passing style

FF bound shmem FIFO channel
Single-Producer-Single-Consumer

lock-free fence-free queue

FF unbound shmem FIFO channel
Single-Producer-Single-Consumer

lock-free fence-free queue

Distributed zero-copy channel
0MQ/TCP or native IB/OFED

33

Queues: performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a

n
o
s
e
c
o

n
d

s

buffer size

same core, different context
different cores, same CPU

different CPUs

✤ MVAPICH (shmem) ~ 190ns !
✤ Faster and more scalable than

CAS/test-and-set implementation

Xeon E7-4820 @2.0GHz Sandy Bridge

✤ Comparable with MVAPICH (distributed)

Shared-memory Distributed

34

Core patterns

✤ Streaming patterns: fast data movements + computation-to-core pinning!
✤ Full control of locality and memory affinity!

✤ Fully compositional and deadlock-free (by construction)!

✤ Minimalistic run-time!
✤ Two patterns and one pattern-modifier: farm, pipeline and feedback!
✤ Configurable scheduling and gathering policies and implementations!

✤ Full expressivity!
✤ Enough to build higher-level abstraction: Master-worker, D&C, Map, Reduce, Pool, Stencil, …

35

Core patterns: farm, pipeline, feedback
+ Nonblocking/blocking, dynamic/static scheduling, E/C policy configuration, core pinning

Specialisation (OO)

E

W1

W2

Wn

C...

S1 S2 Sn...

farm

pipeline

Patterns

S1 S2 Sn...

pipeline with feedback

S1 Sn...

GPU

S2

pipeline with GPU nodes

…

E

W1

W2

Wn

C...

E

W1

W2

Wn

...
M

em
 lo

ck
fre

e

W1

W2

Wn

...

master!
worker

farm with !
feedback

farm with !
in-memory!
scheduling

farm of GPU!
nodes

E C
...

GPU-1

GPU-n

…

36

Core patterns can be arbitrarily composed

E

W1

W2

Wn

C E

W1

W2

Wk

C

E

W1

W2

Wn

C E C

...

GPU-1

GPU-k

... E

W1

W2

Wn

...

S1

E

11

21

n1

...

12

22

n2

C

...

...
...

pipe(farm(s),farm(s))

pipe(farm(s),farm(s),loopback)

farm(pipe(s1,s2))

pipe(s1,farm(s2))

farm(farm(s))

…
37

Master-worker (0.5 μS workload)

0

2

4

6

8

2 3 4 5 6 7 8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS

M

W1 W2 Wn

...

38

Sp
ee

du
p

0

2

4

6

8

Number of Cores

2 3 4 5 6 7 8

Ideal POSIX lock CAS FastFlow

Master-worker (5 μS workload)

M

W1 W2 Wn

...

39

Master-worker (5 μS workload)

M

W1 W2 Wn

...

40

Core patterns: a programming model

✤ A low/medium-level data-centric programming model!
✤ Concurrent computation modelled as a (cyclic) graph!
✤ Nodes are parallel activities. Edges are true data dependencies!
✤ Synchronisation are messages, data can be moved as messages or shared memory!

✤ Can be realised with or without coherency, in shared-memory, distributed, PGAS, …!

✤ Not exactly a Kahn’s net, more a CSP-actor hybrid model!
✤ Processes are named and the data paths between processes are identified

41

High-level patterns

✤ Address application needs!
✤ Loop parallelism (OpenMP fashion) !

✤ Parallel-For, Parallel-For-Reduce!

✤ Data Parallelism !
✤ Stencil, Stencil-Reduce, Map, MapReduce (pipelined)!

✤ Task & Stream!
✤ Pool (e.g. genetic alg.), Macro-Data-Flow (e.g. linear algebra, dynamic programming, …)!

✤ Farm, Pipeline !

✤ Implementation-wise, just OO extensions of composition of core patterns
42

High-level patterns

✤ Think in parallel & high-level!
✤ Efficiency, portability, time-to-market!

✤ High-level parallel patterns!
✤ Describing collective behaviour !
✤ Can be: expressive, efficient, compositional!
✤ Multicore, GPGPUs, distributed with an unifying vision!

✤ Thanks to clear semantics, can be autonomically reconfigured!
✤ not discussed in this talk - see ParaPhrase EU STREP FP7 project

M. Aldinucci, M. Danelutto, P. Kilpatrick. Autonomic management of
non-functional concerns in distributed and parallel application

programming. IPDPS, 2009. IEEE.

43

Example: parallel for

✤ Currently a method call on a C++11 Lambda function (loop body)!
✤ All other high-level patterns in the same style!

✤ Moving to C++11 generalised attribute syntax (N2761)!
✤ Within REPARA EU-FP7 STREP project
!
 [[ff::target(ff::cpu,ff::gpu), ff::input(A), ff::output(A), …]] 	
 for(; ; ;) { … }	

44

01

Applications
Stream: Sequence Alignment Tools!
Tasks: Linear Algebra!
Data: Image Filtering!
System programmers should use the techniques they
advocate: memory allocation!
!

45

Stream: Bowtie (BT) and BWA
sequence alignment tools

✤ Top tools for parallel DNA
alignment!

✤ Hand-tuned C/C++/SSE2 code!

✤ Spin locks + Pthreads!

✤ Sequences (reads) are streamed from
MMIO files to workers!

✤ Memory bound!

✤ FastFlow master-worker!

✤ Memory affinity, pinning, affinity
scheduling (embedded in the
pattern)!

✤ BT: up to 200% speedup  
BWA: up to 10% speedup  
over originals

Shared-Memory
input

(Reads, Genome)

Shared-Memory output
(Alignment)

W1 Wn

mutex

(mutex)

Memory
task

(Read)

Memory
task

(Read)

worker
threads

Required in some tools
(Bowtie2=yes, BWA=no)

Memory
input/output

(Reads, Alignment)

W1 Wn

E…

Shared-Memory
interleaved and read-only

(Alignment)

Memory
task

(Read)

Memory
task

(Read)
…

core-pinned
worker threads

lock-free
synchronisations

affinity scheduling
implemented via

scheduler thread (active)
or lock-free scheduler

object (passive)

FastFlow
master-worker

C. Misale, G. Ferrero, M. Torquati, M. Aldinucci.
Sequence alignment tools: one parallel pattern
to rule them all?
BioMed Research International, 2014.

BT2.0-FF

BT
2.

0
BT

2.
2

46

✤ Macro-Data-Flow (MDF) pattern encoding
dependence DAG!
✤ pipeline(TaskGen, farm(TaskExec))

✤ Configurable scheduling, affinity, … !

✤ Dynamic generation of the DAG!

✤ Comparable or faster than specialised linear
algebra frameworks (e.g. PLASMA)!
✤ MDF is general, can be used for a wide range of

applications, Dynamic Programming,
Divide&Conquer, …

Graphs of tasks
LU and Cholesky

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
 0

 5

 10

 15

 20

 25

 30

S
e
rv

ic
e
 T

im
e
 (

S
)

-
lo

g
sc

a
le

S
p
e
e
d
u
p

FF’s workers / PLASMA’s threads

ffMDF
PLASMA-S
PLASMA-D

ideal speedup

 10

 100

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
 0

 5

 10

 15

 20

 25

 30

S
e
rv

ic
e
 T

im
e
 (

S
)

-
lo

g
sc

a
le

S
p
e
e
d
u
p

FF’s workers / PLASMA’s threads

ffMDF
PLASMA-S
PLASMA-D

ideal speedup

Cholesky size=8192, Nehalem 32 cores

LU size=8192, Nehalem 32 cores

47

Data Parallelism: Two-stage restoring

Detect Denoise

Noise mapNoisy image Restored image

✤ Statistic detection + variational restoration!
✤ High quality, edge-preserving filtering!
✤ Much more computational demanding, not really viable without parallelism!

✤ Matlab on a single 256x256 image with 50% of noise requires dozen of minutes!
✤ Stages can be pipelined

✤ progressive-switching/adaptive median!
✤ neural/bayesian networks, fuzzy, …

✤ variational!
✤ statistic

48

Effective noise filtering (variational)
Salt-andPepper, Gaussian, …

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal!
Baboon standard!

test image!
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB MAE 2.67 49

Detect
C++ business code

CPUs only

Denoise
C++ or OpenCL business code

CPUs only, GPGPUs only
CPUs+GPGPUs

FastFlow node

stencil reduce

FastFlow stencil-reduce

Alternative
deployments

FastFlow node

E

W

W

W

C

FastFlow farm
(on independent frames)

FastFlow node
stencil reduce

FastFlow
stencil-reduce

(on partitions of a
single frame)

stream of independent
< frames, outlier_mask >

➁ Parallel
C++ on CPUs

➂ Parallel
OpenCL on CPUs

➃ Parallel
OpenCL on GPUs

Alternative
deployments for
each worker W

➀�Sequential
C++ on CPU

➊ Sequential
C++ on CPU

➋ Parallel
C++ on CPUs

➌ Parallel
OpenCL on CPUs

➍ Parallel
OpenCL on GPUs

➎ Parallel
OpenCL on CPUs and GPUs

50

M. Aldinucci, M. Torquati, M. Drocco, G. Peretti Pezzi, and C.
Spampinato. Fastflow: Combining pattern-level abstraction and
efficiency in GPGPUs. GTC 2014, San Jose, CA, USA, 2014

Stencil-Reduce!
pattern init

Stencil-Reduce!
pattern run

51

Performance (CPUs + GPGPUs)
Video frames 768x512

FP
S

0

10

20

30

40

S&P 10% S&P 50% Gauss V10 Gauss V100

32 cores + K20 32 core

Nehalem 32 cores + 1 K20

FP
S

0

10

20

30

40

S&P 10% S&P 50% Gauss V10 Gauss V100

16 cores + 2xM2090 16 cores + 1xM2090 16 cores

SandyBridge 16 cores + 2 Tesla M2090

no difference w.r.t. hand-written CUDA code 52

Parallel memory allocation (lock-free)

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

54

Parallel memory allocation (lock-free)

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

OS
allocator

54

Parallel memory allocation (lock-free)

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

FF allocator

54

Parallel memory allocation (lock-free)

✤ A network that connects data
allocations-deallocations paths!

✤ Faster than posix, often faster
than hoard and TBB!
✤ unpublished, code available on

sourceforge!

✤ Implements deferred deallocation
to avoid ABA problem

new(C)

delete(B)
new(A)

delete(A)
delete(C)

new(B)
new(C)

FF allocator

54

FFalloc

FFalloc

FFalloc

FFalloc
P

Cn

C2

C1

Producer P:
for(i=0;i<10M;i++){
 pi = malloc(rnd(size));
 *pi=...;
 dispatch_RR pi;
}

...

Consumer Ci:
while (pi=get())
 do_work(1μs,pi);
 free(pi);
}

uSPSC queue

P

Cn

C2

C1

...

FFalloc

FFalloc

FFalloc

FFalloc

...
uSPSC queue

+= malloc

free

free

free

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32

Ti
m

e
(s

)

N. of (dealloc) threads

10M alloc/dealloc (32B) - 1µs tasks - 32-core Intel E7 2Ghz

Hoard-3.9
libc-6
TBB-4.0
FastFlow
Ideal

55

Conclusion

✤ Low-level approach for a better performance/scalability!
✤ It is already a myth, a medium scale. Does someone still believe assembler is faster than C++?!
✤ Not proved, but we believe it will be even more evident at the large scale (exa-scale)!

✤ FastFlow: header-only C++11 library!
✤ Research framework, portable everywhere exists a C++11 compiler, tiny codebase!
✤ Efficient, scalable!

✤ A data-centric parallel programming model is paramount!
✤ High-level with a clear parallel semantics, compositional, enhancing locality and fast data

movements
56

01

Think different.
Stay foolish, play with cars!
Stay hungry, keep looking to new toys

58

Thanks

M. Aldinucci G. Peretti C. MisaleF. Tordini M. DroccoA. Secco

M. Danelutto M. Torquati

University !
of Turin

University !
of Pisa

EU-FP7 - 3.5M€

IMPACT

EU-FP7 - 3.7M€

Unito - 440K€

EU-FP7 Network!
of Excellence

https://sourceforge.net/projects/mc-fastflow/
57

P. Kilpatrick

