
Date: 25 March 2014, San Jose, CA, USA - Presentation S4585

FastFlow: Combining Pattern-Level
Abstraction and Efficiency in GPGPUs
Marco Aldinucci, Computer Science Department, University of Turin, Italy

M. Torquati (University of Pisa, Italy), M. Drocco, G. Peretti Pezzi (University of Turin, Italy), C. Spampinato (University of Catania, Italy)
PI of the CUDA research center at University of Turin, Italy

Outline

✤ Motivational example!
✤ An effective (and quite universal) image/video denoiser!

✤ Paradigmatic programming pattern for GPGPUs?!

✤ On patterns for multicore and GPGPUs!
✤ FastFlow!

✤ Some performance results!

✤ A demo

Salt&Pepper!
noise 70% Restored

Original

Salt & Pepper noise

✤ Electronic and signal noise!

✤ Uniform distribution of “saturated” white/black pixels!
✤ Measured as percentage of affected vs overall pixels!

✤ Typically restored using statistic filters: e.g. median, median-adaptive!

✤ Not satisfactory for high levels of noise!
✤ not only outliers are filtered (image results smoothed)

0%

30%

70%

Salt & Pepper noise

✤ Electronic and signal noise!

✤ Uniform distribution of “saturated” white/black pixels!
✤ Measured as percentage of affected vs overall pixels!

✤ Typically restored using statistic filters: e.g. median, median-adaptive!

✤ Not satisfactory for high levels of noise!
✤ not only outliers are filtered (image results smoothed)

3x3!
kernel5%

7x7!
kernel

Gaussian noise

✤ Poor illumination, temperature, circuit noise!

✤ White additive noise in the frequency domain!
✤ Measured with mean and variance of the Gaussian distribution!

✤ Affect all pixels, with an additive “white” value distributed as a Gaussian!

✤ Typically restored using statistic filters: e.g. median, Guassian smoothing!

✤ More difficult to manage: restored image results smoothed

Original
Var 10
Var 30
Var 50

Two-stage restoring

Detect Denoise

Noise mapNoisy image Restored image

✤ progressive-switching/adaptive median!
✤ neural/bayesian networks, fuzzy, …

✤ variational!
✤ statistic

✤ Decouple detection decoupled from restoration!
✤ Pixels considered not outliers are not altered by restoration!
✤ False positives impair restoration quality

Two-stage restoring

Detect Denoise

Noise mapNoisy image Restored image

✤ Statistic detection + variational restoration!
✤ High quality, edge-preserving filtering!
✤ Much more computational demanding, not really viable without parallelism!

✤ Matlab on a single 256x256 image with 50% of noise requires dozen of minutes!
✤ Stages can be pipelined

✤ progressive-switching/adaptive median!
✤ neural/bayesian networks, fuzzy, …

✤ variational!
✤ statistic

Variational De-noising:
an iterative optimisation problem

img

noiseMap

Try any possible color k for !
the pixel, choose u, !

the one that minimize the !
value of F(neighb8(i,j))

F(…) weight differently!
noisy and not noisy pixels

do	
 foreach i,j	
 if (noisyMap[i,j])	
 let N = neighb8(img,i,j)	
 let k in 0..255	
 u=argmin(F(k,N,noiseMap))	
 img[i,j]=u	
while (process not converge)		 	
	 	

You can write it directly with C++ and CUDA!
but what happens splitting the work onto 2 GPGPUs?

Variational Denoise: F(…) details
(almost universal for different noise types)

Fd|N (u) =
X

(i,j)2N

[|ui,j � di,j |+
�

2
(S1 + S2)]

S1 =
X

(m,n)2Vi,j\N

2 · '(ui,j � dm,n) S2 =
X

(m,n)2Vi,j\Nc

'(ui,j � um,n)

'(t) = |t|↵ with 1 < ↵ 2

argmin
u2N

F (u) = ↵

Z
R(u) + �

Z
D(u, d)

regularization term data fidelity term

In the spatial domain

for Salt&Pepper

✤ R. Chan, C. Ho, and M. Nikolova, Salt-and-pepper noise
removal by median-type noise detectors and detail-
preserving regularization. IEEE Trans. on Image
Processing, vol. 14, 2005.!

✤ M. Aldinucci et al. A parallel edge preserving algorithm for
salt and pepper image denoising. In Intl. Conference on
Image Processing Theory Tools and Applications (IPTA),
2012. IEEE.

Convergence can’t be evaluated with a reduce 
(involves three iterations, i.e. memory)

Noisy Img

iterations

Img (k-1) Img (k) Img (k+1)

2 4 2 5 8 5

-
=

-
=

6 7 6

-
=

Residuals
2 4 2 5 8 5
3 4 3 1 1 1

Diff of residuals

Reduce of diffs
X

�(k+1) = 3
X

�(k) = 10 ����P�(k)
�����

��P�(k+1)
��

��P�(k)
�� < ✏ 2 R

terminate if

M. Aldinucci, M. Drocco et al.
IJHPCA submitted

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 20 40 60 80 100 120

PS
N

R

n. cycles

image: space, size: 2048x2048, noise: 90%

flat
border

std
cluster

qu
al

ity
 →

time →

Quality results

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal!
Baboon standard!

test image!
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB MAE 2.67

01

Patterns are a natural
approach in GPGPUs

8
S05: High Performance Computing with CUDA

Data-Parallel AlgorithmsData-Parallel Algorithms

Efficient algorithms require efficient building blocks

This talk: data-parallel building blocks

Map

Gather & Scatter

Reduce

Scan

7
S05: High Performance Computing with CUDA

Think In ParallelThink In Parallel

The GPU is a data-parallel processor

Thousands of parallel threads

Thousands of data elements to process

All data processed by the same program

SPMD computation model

Contrast with task parallelism and ILP

Best results when you “Think Data Parallel”

Design your algorithm for data-parallelism

Understand parallel algorithmic complexity and efficiency

Use data-parallel algorithmic primitives as building blocks

S05: High Performance Computing with CUDA

Data-parallel Algorithms &Data-parallel Algorithms &

Data StructuresData Structures

John Owens

UC Davis… and this well-known from long time

but are “standard” and “flat”!
data-parallel pattern expressive!

enough for the problems?

Rationale: patterns are there but are not simply
map or reduce

✤ Detect-Denoise can be naturally pipelined!

✤ Denoise is a (sort of) map with a stencil!
✤ Where, x = < x1, x2, …, xn >, map f x = < f(x1), f(x2), …, f(xn) >!

✤ Can be written as a map, but is neither natural nor easy !

✤ Convergence evaluation is map across three iterations and reduce!
✤ Even more complex to write it as a MapReduce (if not impossible)!

✤ Cholesky LU or C4.5 tree pruning with map, reduce or MapReduce?

01

stencilReduce

✤ a (low-level) powerful pattern!
✤ it capture most of the interesting data

parallel GPGPUs computations!
✤ Subsumes: map, reduce, mapReduce!
✤ Programmers do not need to write any line

of host code to drive the GPGPU!
✤ D2H/H2D, data feeding,

synchronisations, block configurations,
…

loop	

	 before (…)	

	 stencil<stencilK,reduceK> (data[i], env)	

	 reduce op data	

	 after (…)

01

stencilReduce

✤ a (low-level) powerful pattern!
✤ it capture most of the interesting data

parallel GPGPUs computations!
✤ Subsumes: map, reduce, mapReduce!
✤ Programmers do not need to write any line

of host code to drive the GPGPU!
✤ D2H/H2D, data feeding,

synchronisations, block configurations,
…

loop	

	 before (…)	

	 stencil<stencilK,reduceK> (data[i], env)	

	 reduce op data	

	 after (…)

Unified Memory !
greatly simplify this part

Compute on host!
possibly in parallel on CPU cores

Compute on host!
possibly in parallel on CPU cores

CUDA code

Low-level approaches = lot of freedom
(threads, CUDA, OpenCL, MPI, …)

you can design your algorithms as you want!
… as a car, you can drive it where you want

Val D’Orcia, Tuscany, Italy

car

Low-level approaches = lot of freedom
(threads, CUDA, OpenCL, MPI, …)

✤ Think in parallel & high-level!
✤ Efficiency, portability, time-to-market!

✤ High-level parallel patterns!
✤ Describing collective behavior !
✤ Can be: expressive, efficient, compositional!
✤ Targeting multicore, GPGPUs, distributed

with an unifying vision!
✤ On various CPUs/GPGPUs and OSes

you can design your algorithms as you want!
… as a car, you can drive it where you want

Sao Paulo, Brasil

01

FastFlow (FF)

✤ C++ header-only library!

✤ Portable everywhere exists a C++ compiler !

✤ Originally designed for high-frequency streaming!

✤ Provides stream-oriented and data-parallel patterns!

✤ compositional, efficient!

✤ Accommodate diversity !

✤ if you need a different pattern, do it extending a C+
+ class!

✤ Multi-core, GPGPUs, distributed!
✤ https://sourceforge.net/projects/mc-fastflow

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st

Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

https://sourceforge.net/projects/mc-fastflow

FF building blocks: nodes and channels
Core patterns

pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

node
channel name

or channel
channel name

or channel

mi-node

channel
name

or channel

channel
names

. . .

mo-node

channel
names

channel
name

or channel

. . .

threads or processes!
threads are non-blocking!
(can be suspended using!

a native protocol)

FF bound shmem FIFO channel
Single-Producer-Single-Consumer

lock-free fence-free queue

FF unbound shmem FIFO channel
Single-Producer-Single-Consumer

lock-free fence-free queue

Distributed zero-copy channel

0MQ/TCP or native IB/OFED

shmem channels communicate!
pointers in a message passing style

M. Aldinucci and M. Danelutto and P. Kilpatrick and M
Meneghin. An Efficient Synchronisation Mechanism for

Multi-Core Systems. Euro-Par 2012. LNCS.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a
n
o
s
e
c
o
n
d
s

buffer size

same core, different context
different cores, same CPU

different CPUs

✤ MVAPICH ~ 190ns !
✤ faster and more scalable than

CAS/test-and-set implement.

Xeon E7-4820 @2.0GHz Sandy Bridge

Master-workers (0.5 μS workload)

0

2

4

6

8

2 3 4 5 6 7 8

Sp
ee

du
p

Number of Cores

Ideal POSIX lock CAS

M

W1 W2 Wn

...

Master-workers (5 μS workload)

Sp
ee

du
p

0

2

4

6

8

Number of Cores

2 3 4 5 6 7 8

Ideal POSIX lock CAS FastFlow

M

W1 W2 Wn

...

Master-workers (5 μS workload)

M

W1 W2 Wn

...

Semantics of the node: dataflow activation

class mynode: public ff_node {	
public:	
	 int svc_init() { 	
	 	 /* after constructor - running as a thread */ 	
	 	 return 0; 	
	 }	
	 	
	 void * svc(void * task) {	
	 	 int * t = (mytask_t *) task;	
	 	 // do something on task	
	 	 cout << “mynode "<< ff_node::get_my_id()	
	 	 << " received task " << t->payload << "\n";	
	 	 return task;	
 }	
!
	 void svc_end() { 	
	 	 /* before destructor - running as a thread */ 	
	 }	
};

ff_node

mynode is created as a standard !
C++ class extending ff_node

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

Semantics of the node: dataflow activation

ff_node

class mynode: public ff_node {	
public:	
	 int svc_init() { 	
	 	 /* after constructor - running as a thread */ 	
	 	 return 0; 	
	 }	
	 	
	 void * svc(void * task) {	
	 	 int * t = (mytask_t *) task;	
	 	 // do something on task	
	 	 cout << “mynode "<< ff_node::get_my_id()	
	 	 << " received task " << t->payload << "\n";	
	 	 return task;	
 }	
!
	 void svc_end() { 	
	 	 /* before destructor - running as a thread */ 	
	 }	
};

After class construction !
mynode is turn into a thread!

!

Nodes are not tasks (as in TBB),
they are executors!

!

The svc_init() method is !
executed!

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

Semantics of the node: dataflow activation

ff_node

class mynode: public ff_node {	
public:	
	 int svc_init() { 	
	 	 /* after constructor - running as a thread */ 	
	 	 return 0; 	
	 }	
	 	
	 void * svc(void * task) {	
	 	 int * t = (mytask_t *) task;	
	 	 // do something on task	
	 	 cout << “mynode "<< ff_node::get_my_id()	
	 	 << " received task " << t->payload << "\n";	
	 	 return task;	
 }	
!
	 void svc_end() { 	
	 	 /* before destructor - running as a thread */ 	
	 }	
};

the node enters in a infinite loop!

1. get a task from input channel (i.e. a pointer)!
2. execute svc method!
3. put a task the output channel (i.e. a pointer)!

svc() might output more tasks via
ff_send_out call (not shown)  

The node terminate on returning a NULL
pointer

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

Semantics of the node: dataflow
activation

class mynode: public ff_node {	
public:	
	 int svc_init() { 	
	 	 /* after constructor - running as a thread */ 	
	 	 return 0; 	
	 }	
	 	
	 void * svc(void * task) {	
	 	 int * t = (mytask_t *) task;	
	 	 // do something on task	
	 	 cout << “mynode "<< ff_node::get_my_id()	
	 	 << " received task " << t->payload << "\n";	
	 	 return task;	
 }	
!
	 void svc_end() { 	
	 	 /* before destructor - running as a thread */ 	
	 }	
};

ff_node

svc_end is executed before class
destruction!

!

termination token is propagated !
to the next node

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

FF core patterns: pipe, farm, feedback
they are streaming networks, not task graphs

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

...

E

W1

W2

Wn

E...

pipeline

farm

S1 S2 Sn...

pipeline with feedback

farms with feedback!
(e.g. D&C and Master-Workers)

M

W1 W2 Wn

...E

W1

W2

Wn

C...

or any composition of them

feedback

#include <vector>
#include <iostream>
#include <ff/farm.hpp>

using namespace ff;

// generic worker
class Worker: public ff_node {
public:
 void * svc(void * task) {
 int * t = (int *)task;
 std::cout << "Worker " << ff_node::get_my_id()
 << " received task " << *t << "\n";
 return task;
 }
 // I don't need the following functions for this test
 //int svc_init() { return 0; }
 //void svc_end() {}

};

// the gatherer filter
class Collector: public ff_node {
public:
 void * svc(void * task) {
 int * t = (int *)task;
 if (*t == -1) return NULL;
 return task;
 }
};

// the load-balancer filter
class Emitter: public ff_node {
public:
 Emitter(int max_task):ntask(max_task) {};

 void * svc(void *) {
 int * task = new int(ntask);
 --ntask;
 if (ntask<0) return NULL;
 return task;
 }
private:
 int ntask;
};

int main(int argc, char * argv[]) {

 if (argc<3) {
 std::cerr << "use: "
 << argv[0]
 << " nworkers streamlen\n";
 return -1;
 }

 int nworkers=atoi(argv[1]);
 int streamlen=atoi(argv[2]);

 if (!nworkers || !streamlen) {
 std::cerr << "Wrong parameters values\n";
 return -1;
 }

 ff_farm<> farm; // farm object

 Emitter E(streamlen);
 farm.add_emitter(&E);

 std::vector<ff_node *> w;
 for(int i=0;i<nworkers;++i) w.push_back(new Worker);
 farm.add_workers(w); // add all workers to the farm

 Collector C;
 farm.add_collector(&C);

 if (farm.run_and_wait_end()<0) {
 error("running farm\n");
 return -1;
 }
 std::cerr << "DONE, time= " << farm.ffTime() << " (ms)\n";
 farm.ffStats(std::cerr);

 return 0;
}

GPGPUs

✤ Fill stencilReduce methods with CUDA kernel code!
✤ No CUDA-related host code at all need to be written!

✤ Possibly nest stencilReduce into another pattern!
✤ e.g. farm to use many GPGPUs !

✤ the async copy engine is automatically used via CUDA streams!

✤ Helpful to mix threading (or distributed) with GPGPUs!

✤ If you already have your standard host+CUDA code just copy-paste into a svc() method

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

E

W1 W2

C

GPU1 GPU2

FF core patterns: rationale

✤ farm: process in parallel independent tasks (e.g. C++ objects)!
✤ true dependencies are enforced only along edges of the graph!

✤ workers might synchronise (e.g. w locks/atomics), synchronisation in the business code!

✤ farm, pipeline and feedback (to build cyclic networks) are enough to write all other
patterns!

✤ Think to GPGPUs design!
✤ They be though as machines to compute a map, reduce, stencil, …!

✤ … but in hardware they are built as a farm that dispatches independent blocks onto multiprocessors
(+global memory)

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

FF high-level patterns

✤ Proposed as code annotations!
✤ Similarly to openMP, openacc, …!

✤ used to generate a graph at the core pattern level!

✤ Examples!
✤ parallel_for!

✤ map, reduce, MapReduce, … (targeting GPGPUs)!

✤ and as many as you want: developing a new pattern is just developing a new class

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

Example: map (derived from stencilReduce)

✤ 2 or more GPGPUs on the same platform!
✤ nest a stencilReduce, map, reduce … into a (host) farm with 2 workers!

✤ (future: we need to understand how to use NVLINK)!

✤ offload code onto distributed GPGPUs!
✤ nest a stencilReduce, map, reduce … into a (host) distributed farm with 2 workers!

✤ data serialisation is up to user, the framework just provides callback to do it!

✤ In both cases!
✤ be sure that tasks are independent (otherwise you need another pattern)

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

Example: map (derived from stencilReduce)

FFMAPFUNC(mapF, unsigned int, in, return (in * 2););	
!
class cudaTask: public baseCUDATask<unsigned int> {	
public:	
	 void setTask(void* t) {	
	 	 if (t) {	
	 	 	 cudaTask *t_ = (cudaTask *) t;	
	 	 	 setInPtr(t_->in); // match of data pointer H2D	
	 	 	 setOutPtr(t_->in); // match of data pointer D2H	
	 	 	 setSizeIn(inputsize); // needed without Unified memory	
	 	 }	
	 }	
	 unsigned int *in, *out;	
};	
!
main () {	
…	
// put the input in task->in 	
FFMAPCUDA(cudaTask, mapF) *myMap = new FFMAPCUDA(cudaTask, mapF)(*task);	
myMap->run_and_wait_end();	
// result is in task->out	
…	
}

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

Example: map (derived from stencilReduce)

FFMAPFUNC(mapF, unsigned int, in, return (in * 2););	
!
class cudaTask: public baseCUDATask<unsigned int> {	
public:	
	 void setTask(void* t) {	
	 	 if (t) {	
	 	 	 cudaTask *t_ = (cudaTask *) t;	
	 	 	 setInPtr(t_->in); // match of data pointer H2D	
	 	 	 setOutPtr(t_->in); // match of data pointer D2H	
	 	 	 setSizeIn(inputsize); // needed without Unified memory	
	 	 }	
	 }	
	 unsigned int *in, *out;	
};	
!
main () {	
…	
// put the input in task->in 	
FFMAPCUDA(cudaTask, mapF) *myMap = new FFMAPCUDA(cudaTask, mapF)(*task);	
myMap->run_and_wait_end();	
// result is in task->out	
…	
}

This is CUDA code!
!

Simple in this case, but any CUDA
code is valid here!

It will be compiled with NVCC

This is a macro!
!

For multicore we use C++11
lambda. Theoretically possible to

use Lambda for kernel code?!
(maybe with UnifiedMemory)

This is just a name to !
distinguish this kernel

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

GPGPU code: Rationale

✤ Is it worth abstract even more?!
✤ In particular, the the CUDA code

✤ No, we believe!
✤ Often not needed: CUDA code if often C++ code !

✤ Access to thread_id, always needed!

✤ Programmers would like to super-optimize their code!
✤ using all CUDA features!

✤ CUDA evolves too rapidly

“Demo”

map, farm(map), …

“Demo”

denoiser

Example: Qt-mandelbrot (from Qt samples)

…	
const int Limit = 4;	
bool allBlack = true;	
if (restart) break;	
if (abort) return;	
!
pf_det.parallel_for(-halfHeight, halfHeight, 1, halfHeight, 	
	 	 	 	 [&](const long y) {	
uint *scanLine =	
	 reinterpret_cast<uint *>(image.scanLine(y + halfHeight));	
double ay = centerY + (y * scaleFactor);	
…	
}	
private:	
ParallelFor pf_det;	
…

…	
const int Limit = 4;	
bool allBlack = true;	
if (restart) break;	
if (abort) return;	
!
for (int y = -halfHeight; y < halfHeight; ++y) {	
!
uint *scanLine =	
	 reinterpret_cast<uint *>(image.scanLine(y + halfHeight));	
double ay = centerY + (y * scaleFactor);	
…	
}	
private:	
!
…

Original (sequential) FastFlow (parallel)

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

Open
CL

“Demo”

mandelbrot

01

Performance (multicore)

 0

 4

 8

 12

 16

 20

 24

 28

 32

lane2-CTL-qseq SRR568427 SRR534301

S
p

e
e

d
u

p

Dataset

Bt2
Bt2-int
Bt2FF

Bt2FF-pin
Bt2FF-pin+int

Bowtie2 tool (DNA mapping)

Original version: pthreads + test&set spinlocks!
FF differs no more than 30 lines of !

code from the original on several thousands!
(including memory affinity management)

Smith-Waterman!
(SSE2) against!

OpenMP, Cilk, TBB

Cholesky LU!
against PLASMA

sp
ee

d
→

proteine length →

Performance (CPUs + GPGPUs)
Video frames 768x512

FP
S

0

10

20

30

40

S&P 10% S&P 50% Gauss V10 Gauss V100

32 cores + K20 32 core

Nehalem 32 cores + 1 K20

FP
S

0

10

20

30

40

S&P 10% S&P 50% Gauss V10 Gauss V100

16 cores + 2xM2090 16 cores + 1xM2090 16 cores

SandyBridge 16 cores + 2 Tesla M2090

no difference w.r.t. hand-written CUDA code

FastFlow: a framework for research

✤ Open-minded patterns!
✤ A pattern is missing? Not happy of the implementation? Modify it extending a class …!

✤ Multicore, GPGPUs, distributed under the same theoretical umbrella. No compilers to modify (!)!

✤ Non expert programmers does not need to deal with synchronisations and data copies, just select patterns!

✤ Productivity: portability, reduced development time, porting of legacy applications, …!

✤ Comparable or better with OpenMP and TBB on fine grain!
✤ Comparable with OpenMP on data-parallel - really fast on streaming (especially very high-frequency)!

✤ Entirely C++ (C++11), minimalistic design, solid enough to test new solutions!
✤ E.g. FastFlow lock-free parallel memory allocator extend with CUDA UnifiedMemory!

✤ Main platform is Linux, but works almost everywhere exist a C++ compiler!
✤ MacOS, Win — x86, x86_64, Xeon Phi, PPC, Arm, Tilera, NVidia (CUDA and OpenCL) — gcc, clang, icc, nvcc

FastFlow: a framework for research

✤ Open-minded patterns!
✤ A pattern is missing? Not happy of the implementation? Modify it extending a class …!

✤ Multicore, GPGPUs, distributed under the same theoretical umbrella. No compilers to modify (!)!

✤ Non expert programmers does not need to deal with synchronisations and data copies, just select patterns!

✤ Productivity: portability, reduced development time, porting of legacy applications, …!

✤ Comparable or better with OpenMP and TBB on fine grain!
✤ Comparable with OpenMP on data-parallel - really fast on streaming (especially very high-frequency)!

✤ Entirely C++ (C++11), minimalistic design, solid enough to test new solutions!
✤ E.g. FastFlow lock-free parallel memory allocator extend with CUDA UnifiedMemory!

✤ Main platform is Linux, but works almost everywhere exist a C++ compiler!
✤ MacOS, Win — x86, x86_64, Xeon Phi, PPC, Arm, Tilera, NVidia (CUDA and OpenCL) — gcc, clang, icc, nvcc

Thanks

M. Aldinucci G. Peretti C. MisaleF. Tordini M. DroccoA. Secco

M. DaneluttoM. Torquati

University !
of Turin

University !
of Pisa

EU-FP7 - 3.5M€

IMPACT

EU-FP7 - 3.7M€

Unito - 440K€

EU-FP7 Network!
of Excellence

https://sourceforge.net/projects/mc-fastflow/

