Structured parallel programming

M. Danelutto, REPARA meeting Rapperswil, Jan 2014

oY

Contents

» Outline of structured parallel programming
» Algorithmic skeletons

» Design patterns

» Implementation techniques

» Optimizations

oY
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Structured parallel programming

» The concept:
Parallelism exploited according to (possibly nested) well known
patterns

Rather than built from scratch on top of low level mechanisms
(processes/threads, scheduling, mapping, communication,
synchronization, ...

» Complete separation of concerns

System programmer
In charge of the implementation details, including hw targeting

Application programmer

In charge of the (application/domain specific) qualitative parallelism
exploitation

GW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Two main tracks

From HPC community
Cole, late ‘80
Ready to use patterns

Algorithmic

skeletons

From SW ENG community
Mattson et al, early ‘00
Implementation recipes

Parallel

design patterns

» M. Danelutto, REPARA meeting Rapperswil, Jan 2014 Q

In both cases:

» Skeletons / patterns

Orchestrate parallel execution of components
Components
Wrappers (re-use existing sequential code)

Skeletons/patterns (semi-arbitrary nesting)

Different levels of abstraction provided to the user
(the application programmer)

M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Parallel design patterns

» A design pattern is a representation of a common
pbrogramming problem along with a tested, efficient solution for
that problem (Gamma book)

Problem the problem to be solved

Context the context where the pattern may be most suitably
applied.

Forces the different features in influencing the parallel pattern
design

Solution a description of one or more possible solutions to the

problem solved by the pattern

(Mattson book)

QU
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

High level design spaces

Finding concurrency space

Decomposition Task decomposition Data decomposition
Dependency analysis Group task Order Task
Data analysis

Other Design evaluation

Algorithm structure space

Organize by task Task parallelism Divide and conquer
Organize by data decomp. Geometric decomp. Recursive data
Organize by flow of data Pipeline Event based coordination

it
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Low level design spaces

Supporting structures space

Program structures SPMD Master/worker
Loop parallelism Fork/join
Data Structures Shared data Shared queue

Distributed array

Implementation mechanisms space

UE management Synchronizazion Communication

M. Danelutto, REPARA meeting Rapperswil,Jan 2014 Q

abstract
pattern

implementation

» M. Danelutto, REPARA meeting Rapperswil, Jan 2014 Q

Unstructured vs structured

“From scratch”
programming
effort

(all concerns)

Separation of
concerns
(functional vs.
non functional)

M. Danelutto, REPARA meeting Rapperswil,Jan 2014 Q

Algorithmic skeletons

» Parallelism exploitation patterns

Notable

Usable in a wide range of applications
Efficient

On a wide range of parallel architectures
Parametric

Functional and non functional parameters
Reusable

Only changing parameters

Provided to application programmers as ready to use
programming abstractions

Obiject, classes, high order functions, library entries, ...
M. Danelutto, REPARA meeting Rapperswil,Jan 2014 O

Algorithmic skeletons (typical)

» Stream parallel skeletons (computing over stream items)

Skeleton Parallelism

Task farm Embarrassingly parallel, same computation over all items
Pipeline Computation in stages
Feedback Iterating same computation over results

» Data parallel skeletons (computing over sub-items of a
collection)

Skeleton Parallelism

Map Embarrassingly parallel, same computation over all sub-items

Reduce Summing up collection data to scalar (associative,
commutative operator)

Stencil New elements of the collection from old ones + neighbours

+
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Algorithmic skeletons (typical)

» Higher level skeletons

Skeleton Parallelism

Divide&Conquer Divide problem into base cases, solve them then rebuild
global solution from sub solutions

MapReduce (Google) Map items to <key, value> and reduce values from same keys
usually on big data

Branch&Bound Explore a tree of solutions looking for optimal ones while
pruning “dead” subtrees

QU
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Sample algorithmic skeletons

Parmap.parmap: (o-p) - a list - P list

UNARYFUN (inc, float,x, return(x+1) ;)
skepu: :Vector<float> x,y;

skepu: :Map<inc> incmap (new inc) ;
incmap(x,Vy) ;

Atomic<int,int> stagel (compute, 1)
Pipe myPipe (stage0O,stagel) ;

it
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Sample skeleton code

» Image filtering application

» Pipeline
» Decode video to image
» Stencil (Filter A)
0 Local filter function
» Farm (Filter B)
Filter image (qg)
» Encode image to video

» M. Danelutto, REPARA meeting Rapperswil, Jan 2014 Q

Skeleton composition

» Not in the original Cole work

» Simpler skeleton + composition

Enhance the palette of parallel patterns provided

» Two tier composition
Top : stream parallel skeletons
Middle : data parallel skeletons

Bottom : sequential wrappers

QW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Implementation
» Template based (FastFlow, SKEPU, Muesli, SkeTo)

Multiple visit of the skeleton tree

Assignment of existing templates, properly instantiated, to each
skeleton

Optimising non functional properties (e.g. parallelism degree,
mapping, ...)

» Macro data flow based (Muskel, Skipper, Skandium)
Skeleton tree to MDF graph
MDF graph to parallel MDF interpreter

» Static vs. dynamic optimization tradeoff

M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Optimizations

» Rewriting rules
» Farm(S) =S
» Pipe(A, B) = Comp(A, B)
» Pipe(Map(A), Map(B)) = Map(Pipe(A),Pipe(B))

» M. Danelutto, REPARA meeting Rapperswil, Jan 2014 Q

Optimizations

» Automatically devising non functional parameters
» E.g.Pipeline(Farm(A), Farm(B))

Ta and Tb known
Pardegree(Farm(A)) : ParDegree(Farm(B)) =Ta : Tb
Bounded by

Available resources

Inter arrival time

QW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Offloading

» Known parallel task structure

Decide (schedule) tasks to offload to accelerators

Automatically manage data transfers and computation
scheduling

Profit of different kinds of accelerators in different skeletons

QW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Optimizations

» Optimal allocation of data parallel tasks to CPU and GPU
cores
Depending on
PCle bandwidth
l/O data sizes

Kernel execution time

Joint exploitation of both CPU and GPU resources
Optimizing completion time

And, possibly, power consumption

» Similar results for cloud offloading of excess parallel
computations

oY
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Skeleton worktlow

» Program coding Application

Composition of abstract skeletons programmer

from a palette concern

» Compiling
Assignment of implementations (from library) to skeletons
Devising proper non functional parameters (e.g. par degree)
» Optimization
Target driven rewriting System

» Code generation programmer

High level code + library calls conhcern

QW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

A little bit of history

* Algorithmic skeletons introduced
* Skeleton languages (P3L, Fortran M) and libraries (OcamIP3L, Muesli)
* Mostly from HPC community, poor success

_/
. .)

* OO skeleton programming framework (Muesli, Muskel, SkeTo, ASSIST)
* Design patterns introduced — Parallel design patterns introduced
* More libraries available (C/C++, ML, Java, ...)
* Google mapreduce

J
* Mature skeleton technology (FastFlow, SKEPU, Muesli) A
* Parallel design patterns recognized in multiple contexts (TBB, Microsoft TPL)
* Google (Pregel, BSP, mapreduce optimization (Flume), ...)
* Co-processors targeted (SKEPU, SkeCL, Muesli, FastFlow))

QU
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Perspectives

» Google

Map reduce, composition optimizations, BSP on large data

» Intel TBB

Common and low level patterns as C++ abstractions

» Microsoft TPL

Stream and data parallel patterns in C#
Including data flow computing

» HPC community

More and more projects

» Sw Engineering community

Building new programming models (+ formal tools)

GW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

Summary/key concepts

» Parallelism = skeletons (and only skeletons)

» Implementation guarantees
Hardware targeting & efficiency

Correctness

Oher non functional properties (e.g. fault tolerance, power
management, etc.)

» Complete separation of concerns

Application programmer => qualitative parallelism exploitation

System programmer (once and forall) => quantitative & hw

dependent aspects, including portability (functional and non
functional

GW
M. Danelutto, REPARA meeting Rapperswil,Jan 2014

