
FastFlow introduction (3)
Massimo Torquati
Computer Science Department, University of Pisa – Italy

torquati@di.unipi.it

SPM, 25 November 2014

 2

Data-Flow parallelism

● The data-flow programming model is a general approach to parallelism
based upon data dependencies among program's operations.

● Computation expressed by the data-flow graph (DAG) whose nodes are
instructions and arcs are pure data dependencies (read-after-write dep.).

● Macro Data-Flow: is the same concepts but instructions are macro (fat)
instructions (entire function or a block of code).

● In FastFlow we have the ff_mdf pattern. Currently it is implemented as a
2-stage pipeline whose second stage is a task-farm without collector and
with feedback channel.

 3

FastFlow ff_mdf pattern

● The ff_mdf pattern targets macro-data-flow computations

● The class interface is defined in the file mdf.hpp

● The user has to specify INPUT and OUTPUT data-dependencies for each task by
providing pointers to input and output data

// X = X+Y
void SUM(long *X, long *Y, size_t size);
// Z = X*Y
void MUL(long *X, long *Y, long *Z, size_t size);

{ // A = A+B
 const param_info _1={&A, INPUT};
 const param_info _2={&B, INPUT};
 const param_info _3={&A, OUTPUT};
 std::vector<param_info> P={_1,_2,_3};
 mdf->AddTask(P, SUM, A, B, size);
}
{ // C = A*B
 const param_info _1={&A, INPUT};
 const param_info _2={&B, INPUT};
 const param_info _3={&C, OUTPUT};
 std::vector<param_info> P={_1,_2,_3};
 mdf->AddTask(P, MUL, A, B, C, size);
}

A = A + B;
C = A * B; SUM

MUL

● A task is generated with the method AddTask
sequentially respecting the program order.

● The run-time takes care of dependencies and
task scheduling

 4

Data-flow on shared-memory, warning !
● On shared memory, to reduce memory consumption in-place computation is generally

used, i.e. A = F(A,...)

● Pay attention because you may have anti-dependencies (write-after-read) that in order to
be solved may imply either memory-copy or extra synchronization (less parallelism)

● Consider the case:

If you want to run this op
in parallel with the other ops

you need a copy of A

otherwise you
have to wait the

completion of this op

A = A + B;
B = B + C;
D = D + A;
D = D + A + B

 5

ff_mdf example: a simple workflow

● The constructor interface of the ff_mdf pattern is:

– ff_mdf<T> (taskF, taskF_arg, …<low-level configuration params> ...);

– taskF is a function getting a pointer to a single argument of type T

– taskF_arg is of type T

● Let's take a look at the simple program contained in the tutorial named wf.cpp

 6

Task parallelism

● Tasks are units of work that perform a specific job.

● A task can be a function/procedure or a block of code.

● Typically a “big” task can be decomposed into additional, more fine-grained tasks.

● Differently from data-flow parallel executions, task-parallel executions may require
explicit synchronisations among tasks (typically global sync. i.e. barriers)

● When using task-parallelism the parallelism is organised around the functions to be
executed rather than around the concept of data movement or decomposition.

– On this respect, pipeline (function decomposition) and task-farm (function
replication) can be seen as task-parallel patterns.

● In FastFlow we have the ff_taskf pattern.

– Currently it is implemented as a task-farm skeleton without collector and with
feedback channel.

– It schedules functions or lambdas

 7

FastFlow ff_taskf pattern

● The ff_mdf pattern targets scheduling of functions and lambdas.

– For the moment no support for recursive functions

● The class interface is defined in the file taskf.hpp

● A task is generated with the method AddTask

● Simple example:

std::vector<long> A(SIZE_A);
std::vector<long> B(SIZE_B);

for(long i=0;i<SIZE_A;++i)
 A[i] = F(A,i);

for(long i=1;i<SIZE_B;++i)
 B[i] = G(B,i);

long x = H(A,B);

#include<ff/taskf.hpp>
using namespace ff;

std::vector<long> A(SIZE_A);
std::vector<long> B(SIZE_B);

auto Task1 = [&A]() { for(long i=0;i<SIZE_A;++i)
 A[i] = F(A,i);};
auto Task2 = [&B]() { for(long i=1;i<SIZE_B;++i)
 B[i] = G(B,i); };

ff_taskf tf;
tf.AddTask(Task1);
tf.AddTask(Task2);

tf.run_then_freeze(); // this is a barrier point

long x = H(A,B);

 8

ff_taskf example: block-based matmult

● Let's take a look at the example named blk_matmul_taskf.cpp

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8

