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Outline

● The FastFlow tutorial

● FastFlow basic concepts

– stream concept

– FF building blocks
● Core patterns:

– pipeline & task-farm 
● High-level patterns:

– ParallelFor/ParallelForReduce/Map

– Macro-DataFlow (mdf) 
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The FastFlow tutorial
● The FastFlow tutorial is available as pdf file on the GridKa wiki page in the 

“Programming Multi-Core using FastFlow“ session

● All tests and examples described in the tutorial are available as a separate tarball 
file: fftutorial_source_code.tgz 

– can be downloaded from the wiki page)

● In the tutorial source code there are a number of very simple examples covering 
almost all aspects of using pipeline, farm, ParallelFor, map, mdf, etc..

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example: 
image filtering, block-based matrix multiplication, mandelbrot set computation, dot-
product, etc...

● Please start reading the simple tests, modifying and running them

● Then move to applications 

Let's start working!
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Stream concept

● Sequence of values (possibly infinite), coming from a source, 
having the same data type

– Stream of images, stream of network packets, stream of 
matrices, stream of files, …..

● A streaming application can be seen as a work-flow graph 
whose nodes are computing nodes (sequential or parallel) 
and arcs are channels bringing streams of data.

● Streams may be either “primitive“ (i.e. coming from HW 
sensors, network interfaces, ….) or can be generated 
internally by the application (“fake stream”)

● Typically in a stream based computation the first stage 
receives  (or reads) data from a source and produces tasks 
for next stages.
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Stream examples

● “real streams“

– In these cases it is really important to satisfy minimum 
processing requirements (bandwidth, latency, etc...) in order to 
not lose data coming from the source

● “fake streams”: streams produced by unrolling loops

– You don't have an “infinite“ source of data

– The source is a software module
   for(i=start; i<stop; i+=step)
      allocate data for a task
      create a task
      send out the task
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Patterns operating on stream

● pipeline: computes F4(F3(F2(F1(x)))) for each x

– Pipeline computing elements are called stages

● task-farm (or farm), models functional replication

– Sometimes called also “master-worker”

– Computing elements called: Emitter (E), Worker (computing F) 
and Collector (C)

– The Emitter,  schedules tasks towards the Workers

– The Collector, gathers tasks from Workers 
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The FastFlow layers
● C++ class library

● It promotes (high-level) structured 
parallel programming

● It aims to be flexible and efficient 
enough to target multi-core, many-
core and distributed heterogeneous 
systems.

● Layered design:

– Building blocks minimal set of 
mechanisms: channels, code 
wrappers, combinators.

– Core patterns streaming patterns 
(pipeline and task-farm) plus the 
feedback pattern modifier

– High-level patterns aim to provide 
flexible reusable parametric patterns 
for solving specific parallel problems
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Building blocks

● Minimal set of efficient mechanisms and functionalities

● Nodes are concurrent entities (i.e. POSIX threads)

● Arrows are channels implemented as SPSC lock-free queue

– bounded or unbounded in size
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Core patterns: sequential ff_node

struct myNode: ff_node {
  int svc_init() { // optional
    // called once for initialization purposes
    return 0;  // <0 means error 
  }
  void *svc(void * task) {
    // do something on the input task
    // called each time a task is available 
    return task; // also EOS, GO_ON, ….
  }; 
  void svc_end() {
    // called once for termination purposes
    // called if EOS is either received in input 
    // or it is generated by the node
  }
};

● A sequential ff_node is a thread

● Input/Output tasks (stream elements) 
are memory pointers

● The user is responsible for memory 
allocation/deallocation of tasks

– FF provides a memory allocator 
(not introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more 
tasks to send out, give me 
another input task (if any)“

code wrapper pattern
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ff_node: generating and absorbing 
tasks

struct myNode1: ff_node {
  void *svc(void * task) {
      // generates N tasks and then EOS
      for(long i=0;i<N; ++i)
         ff_send_out(new Task);
      return EOS;
  }; 
};

code wrapper pattern

struct myNode2: ff_node {
  void *svc(void * t) {
      // do something with the task
      Task *task=reinterpret_cast<Task*>(t);
      do_Work(task);
      return GO_ON; // it does not send out task
  }; 
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by 
using the ff_send_out method or simply returning task from the svc 
method

● Typically myNode2 is the last stage of a pipeline computation, it gets 
in input tasks without producing any outputs
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Core patterns: ff_pipe

struct myNode1: ff_node {
  void *svc(void *) {
      for(long i=0;i<10;++i)
          ff_send_out(new myTask(i));
      return EOS;
}};
struct myNode2: ff_node {
  void *svc(void *task) {
      return task;
}};
struct myNode3: ff_node {
  void *svc(void * task) {
       f3((myTask*)task);
    return GO_ON;
}}; 
myNode1 _1;
myNode2 _2;
myNode3 _3; 
ff_pipe<myTask> pipe(&_1,&_2,&_3);
pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to 
generate a stream of tasks

● Here, the first stage generates 10 
tasks and then EOS

● The second stage just produces in 
output the received task

● Finally, the third stage applies the 
function f3 to each stream element 
and does not return any tasks

pipeline pattern
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Simple ff_pipe examples

● Let's comment on the code of the 2 simple tests presented in the 
FastFlow tutorial:

– hello_pipe.cpp 

– hello_pipe2.cpp
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Core patterns: ff_farm

struct myNode: ff_node {
    void *svc(void * t) {
       F(reinterpret_cast<Task*>(t));
    return GO_ON;
}}; 

std::vector<ff_node*> Workers;
Workers.push_back(new myNode);
Workers.push_back(new myNode); 
ff_farm<> myFarm(Workers);

ff_pipe<myTask> 
      pipe(&_1, &myFarm, ….);
pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided  via 
an std::vector

● By providing different ff_node(s) it is easy to 
build a MISD farm

● By default the farm has an Emitter and a 
Collector, the Collector can be removed 
using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by 
providing suitable ff_node objects 

● Default task scheduling is pseudo round-
robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possible to implement user's specific 
scheduling strategies (ff_send_out_to)

● Farms and pipeline can be nested and 
composed in any way

task-farm pattern
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Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the 
FastFlow tutorial:

– hello_farm.cpp 

– hello_farm2.cpp

● Then, let's take a look on how to define Emitter an Collector in a 
farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp
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Examples: image filtering (img.cpp & 
img_pipe.cpp) 

// 4-stage pipeline
ff_pipe<Task> pipe(new Read(filenames), BlurFilter, EmbossFilter, Write);
pipe.run_and_wait_end();

// 1st stage
struct Read: ff_node {
  void *svc(void *) {
     for(long i=0;i<num_images;++)
        Image *img = new Image;
        Img->read(filename);
        Task *task = new Task(img,filename);
        ff_send_out(task);
  }
  return EOS; // End-Of-Stream
}; 

// 2nd stage
Task *BlurFilter(Task *in, ff_node*const) {
    in->image->blur();   return in;
}

// 3rd stage
Task *EmbossFilter(Task *in, ff_node*const) {
    in->image->blur();     return in;
}

// 4th stage
Task *Write(Task *in, ff_node*const) {
    in->image->write(in->name);
    delete in->image;
    delete in;
    return (Task*)GO_ON; 
}



  16

Examples: image filtering 
(img_pipe+farm.cpp) 

// 4-stage pipeline
ff_farm<> farmBlur(BlurFilter);
farmBlur.remove_collector();
ff_farm<> farmEmboss(EmbossFilter);
ff_pipe<Task> pipe(new Read(filenames), &farmBlur, &farmEmboss, Writer);
pipe.run_and_wait_end();

// ff_node wrapper to the Write function
struct Writer: ff_minode {
  void *svc(void *task) {
     return  Write(reinterpret_cast<Task*>(task), this);
}; 

Other nodes are the same as before
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Examples: image filtering 

Other simple transformations

Let's see the code and how
It works !
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Proposed exercises using ff_pipe & 
ff_farm 

● Simple file compressor using miniz.c:

– The sequential implementation is given simplecomp.cpp

– The task is to implement both a pipeline implementation and a 
task-farm implementation of the same code.

● simplecomp_pipe.cpp
● simplecomp_farm.cpp

– HINT: the structure is quite similar to img_pipe.cpp and 
img_farm.cpp, respectively. 

● A more complex and efficient implementation is left as homework 

 

● One possible solution for each exercise will be provided at the end of 
the session
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High-level patterns

● Here we consider ParallelFor ParallelForReduce as data-
parallel patterns

● Macro-Data-flow (MDF) as data-flow pattern (or task-parallel 
pattern)

● Pipeline and task-farm are high-level patterns as well !

● Other patterns available in FastFlow are:

– PoolEvolution for modelling evolutionary applications

– Stencil2D and StencilReduce patterns for iterative stencil-
like computation (multi-core and CUDA-based GPGPUs)

– Divide&Conquer (preliminary version)

– oclMap and cudaMap patterns
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High-level patterns: ParallelFor

// sequential code
for(long i=0;i<N; i+=2)
   A[i] = f(i);

● Loops with independent iterations may be 
parallelised using the ParalleFor pattern

● The ParallelFor interface is in the 
parallel_for.hpp file 

● It is implemented on top of the task-farm 
with a suitable scheduling strategy 

● There are many different methods that 
can be used

● Iteration scheduling provided:

– Default static scheduling

– Static scheduling with interleaving by 
using parallel_for_static

– Dynamic scheduling

● Also provides active scheduling (by using 
farm's Emitter) and passive scheduling

// parallel code
ParallelFor pf; 
pf.parallel_for(0, N, 2, [&A](const long i) {
     A[i] = f(i);
});

map pattern
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High-level patterns: ParallelForReduce

// sequential code: summing all elements
// of an array
double sum=0.0;
for(long i=0;i<N; i++)
   sum += A[i];

● A ParallelFor plus a reduction operation

– associative and commutative 
operation 

● The ParallelForReduce interface is in the 
parallel_for.hpp file 

● It is implemented on top of the task-farm 
with a suitable scheduling strategy 

● Executes a local reduction in the body 
part using a private variable plus a final 
reduction operation using a combination 
function.

● Scheduling strategies are the same as 
those provided by the ParallelFor pattern

// parallel code
ParallelForReduce<double> pfr; 
pf.parallel_for_reduce(sum, 0.0, 0,N,
          [&A](const long i, double &sum) {
             sum +=A[i];
}, [](double &sum, const double v) { 
     sum+=v;
   }
);

map-reduce pattern
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Simple tests using a ParallelFor

● Let's comment on the code of the 2 simple tests presented in the 
FastFlow tutorial:

– hello_parfor.cpp 

– arraysum.cpp
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High-level patterns: ff_map

struct mapWorker: ff_Map<> {
  void *svc(void *task) {
     ….
    ff_Map<>::parallel_for(...);
    ff_Map<>::parallel_reduce(....);
    return task;
  }
};

● The ff_map is just an ff_node that wraps a 
ParallelForReduce pattern

● The ff_map can be used as a pipeline 
stage and as a farm worker

● It is better to use the ff_map than a plain 
ParallelFor in a pipeline or farm 
computations because the run-time 
knows that the given stage/worker is 
parallel

– Better thread mapping strategies and 
optimizations can be applied

map pattern inside
stream parallel patterns
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Examples: Sobel filter (ffsobel.cpp) 

struct sobelStage: ff_Map<> {
   sobelStage(int mapwks): 
       ff_Map<>(mapwrks, true) {};

    void *svc(void *t) {
      Task *task=reinterpret_cast<Task*>(t);
      Mat src = *task->src, dst= *task->dst;
      ff_Map<>::parallel_for(1,src,src.row-1,
           [src,&dst](const long y) {
              for(long x=1;x<src.cols-1;++x) {
                …...
                dst.at<x,y> = sum;
              }
            });
      const std::string outfile=“./out“+task->name;
      imwrite(outfile, dst);
    }

● The first stage reads a number of 
images from disk one by one, 
converts the images in B&W and 
produces a stream of images for the 
second stage

● The second stage applies the Sobel 
filter to each input image and then 
writes the output image into a 
separate disk directory

Let's see the code!
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Proposed exercises using ParallelFor & 
ParallelForReduce 

● Simple matrix computation. Given in input a square matrix of size N 

compute the resulting value as:

                           

For example, given the following 3x3 matrix, then:                        

                        result = 1 + 2*4 + 3*7 + 5 + 6*8 + 9 = 92

– The sequential implementation is given in matcomp.cpp

– The objective is to implement the computation in parallel using 
the ParallelForReduce pattern. 

1 2 3

4 5 6

7 8 9
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High-level patterns: ff_mdf
● The ff_mdf pattern targets macro-data-flow 

computations

● Is a general approach to parallelism based only on 
data dependencies.

● The computation is expressed by the data-flow graph, 
i.e. DAG whose nodes are macro-instructions and arcs 
are pure data-dependencies

– A macro-instruction can be a set of simple 
instractions or a complex kernel function.

● By using the ff_mdf pattern, the user has to specify 
data-dependencies, i.e. declaring which are INPUT 
and OUTPUT data

● The AddTask method of the ff_mdf class is used to 
generate tasks

● The run-time, automatically, takes care of 
dependencies and then schedules ready tasks to 
Workers which executes ready (fireable) instructions 
in parallel 

void taskGen(ff_mdf*const mdf) {
   ….
   const param_info _1=  {&A, INPUT};
   const param_info _2 = {&B, INPUT};
   const param_info _3 = {&C, OUTPUT};
   std::vector<param_info> Param = {_1,_2,_3};
   
   mdf->AddTask(Param, GEMM, A,B,C);
   ….
}

ff_mdf mdf(taskGen, ...); 
mdf.run_and_wait_end();  

data-dependency pattern
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A simple test using ff_mdf

Parameters<ff_mdf> P;// structure containing all parameters needed to taskGen function
ff_mdf dag(taskGen, &P);  // creates the mdf object
P.A=A,P.B=B,P.C=C....P.mdf=&dag...   // preparing all parameters
dag.run_and_wait_end();  // run and wait termination

// macro operations
void sum2(long *X, long *Y, long size);
void sum3(long *X, long *Y, long *Z, long size);
….
// task generator function
void taskGen(Parameters<ff_mdf> *P) {
   … auto mdf = P->mdf;
   
   {// A= A+B
     const param_info _1=  {&A, INPUT};
     const param_info _2 = {&B, INPUT};
     const param_info _3 = {&A, OUTPUT};
     std::vector<param_info> Param = {_1,_2,_3};
     mdf->AddTask(Param, sum2, A, B, SIZE);
   }{// B= B+C
     const param_info _1=  {&B, INPUT};
     const param_info _2 = {&C, INPUT};
     const param_info _3 = {&B, OUTPUT};
     std::vector<param_info> Param = {_1,_2,_3};
     mdf->AddTask(Param, sum2, B, C, SIZE);
   …...

A,B,C,D are arrays of size N

macro instructions
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Simple test using the ff_mdf 

● Let's comment the code of the simple test presented in the FastFlow 
tutorial:

– wf.cpp 
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● Matrix multiplication using Strassen's algorithm:

– We want to compute AxB = C, A is M by P, B is P by N and C is M by N

– Partitioning the matrices in 4 equal-size blocks we have:

S1  = A11 + A22   S2  = B11 + B22  P1  = S1 * S2
S3  = A21 + A22   P2  = S3 * B11
S4  = B12 – B22    P3  = A11 * S4
S5  = B21 – B11    P4  = A22 * S5
S6  = A11 + A12   P5  = S6 * B22
S7  = A21 – A11   S8  = B11 + B12   P6  = S7 * S8
S9  = A12 – A22   S10 = B21 + B22  P7  = S9*S10
C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 - P2 + P3 + P6

– The sequential code is provided in the strassen.cpp file

● Write a parallel version using the ff_mdf pattern.

Proposed exercise using ff_mdf 

A11 A12

A21 A22

B11 B12

B21 B22
X

C11 C12

C21 C22
=
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Thanks for participating!

For any questions or comments please send an e-mail 
to torquati@di.unipi.it
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