
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

Hands-on session

 2

Outline

● The FastFlow tutorial

● FastFlow basic concepts

– stream concept

– FF building blocks
● Core patterns:

– pipeline & task-farm
● High-level patterns:

– ParallelFor/ParallelForReduce/Map

– Macro-DataFlow (mdf)

 3

The FastFlow tutorial
● The FastFlow tutorial is available as pdf file on the GridKa wiki page in the

“Programming Multi-Core using FastFlow“ session

● All tests and examples described in the tutorial are available as a separate tarball
file: fftutorial_source_code.tgz

– can be downloaded from the wiki page)

● In the tutorial source code there are a number of very simple examples covering
almost all aspects of using pipeline, farm, ParallelFor, map, mdf, etc..

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example:
image filtering, block-based matrix multiplication, mandelbrot set computation, dot-
product, etc...

● Please start reading the simple tests, modifying and running them

● Then move to applications

Let's start working!

 4

Stream concept

● Sequence of values (possibly infinite), coming from a source,
having the same data type

– Stream of images, stream of network packets, stream of
matrices, stream of files, …..

● A streaming application can be seen as a work-flow graph
whose nodes are computing nodes (sequential or parallel)
and arcs are channels bringing streams of data.

● Streams may be either “primitive“ (i.e. coming from HW
sensors, network interfaces, ….) or can be generated
internally by the application (“fake stream”)

● Typically in a stream based computation the first stage
receives (or reads) data from a source and produces tasks
for next stages.

 5

Stream examples

● “real streams“

– In these cases it is really important to satisfy minimum
processing requirements (bandwidth, latency, etc...) in order to
not lose data coming from the source

● “fake streams”: streams produced by unrolling loops

– You don't have an “infinite“ source of data

– The source is a software module
 for(i=start; i<stop; i+=step)
 allocate data for a task
 create a task
 send out the task

 6

Patterns operating on stream

● pipeline: computes F4(F3(F2(F1(x)))) for each x

– Pipeline computing elements are called stages

● task-farm (or farm), models functional replication

– Sometimes called also “master-worker”

– Computing elements called: Emitter (E), Worker (computing F)
and Collector (C)

– The Emitter, schedules tasks towards the Workers

– The Collector, gathers tasks from Workers

 7

The FastFlow layers
● C++ class library

● It promotes (high-level) structured
parallel programming

● It aims to be flexible and efficient
enough to target multi-core, many-
core and distributed heterogeneous
systems.

● Layered design:

– Building blocks minimal set of
mechanisms: channels, code
wrappers, combinators.

– Core patterns streaming patterns
(pipeline and task-farm) plus the
feedback pattern modifier

– High-level patterns aim to provide
flexible reusable parametric patterns
for solving specific parallel problems

 8

Building blocks

● Minimal set of efficient mechanisms and functionalities

● Nodes are concurrent entities (i.e. POSIX threads)

● Arrows are channels implemented as SPSC lock-free queue

– bounded or unbounded in size

 9

Core patterns: sequential ff_node

struct myNode: ff_node {
 int svc_init() { // optional
 // called once for initialization purposes
 return 0; // <0 means error
 }
 void *svc(void * task) {
 // do something on the input task
 // called each time a task is available
 return task; // also EOS, GO_ON, ….
 };
 void svc_end() {
 // called once for termination purposes
 // called if EOS is either received in input
 // or it is generated by the node
 }
};

● A sequential ff_node is a thread

● Input/Output tasks (stream elements)
are memory pointers

● The user is responsible for memory
allocation/deallocation of tasks

– FF provides a memory allocator
(not introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more
tasks to send out, give me
another input task (if any)“

code wrapper pattern

 10

ff_node: generating and absorbing
tasks

struct myNode1: ff_node {
 void *svc(void * task) {
 // generates N tasks and then EOS
 for(long i=0;i<N; ++i)
 ff_send_out(new Task);
 return EOS;
 };
};

code wrapper pattern

struct myNode2: ff_node {
 void *svc(void * t) {
 // do something with the task
 Task *task=reinterpret_cast<Task*>(t);
 do_Work(task);
 return GO_ON; // it does not send out task
 };
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by
using the ff_send_out method or simply returning task from the svc
method

● Typically myNode2 is the last stage of a pipeline computation, it gets
in input tasks without producing any outputs

 11

Core patterns: ff_pipe

struct myNode1: ff_node {
 void *svc(void *) {
 for(long i=0;i<10;++i)
 ff_send_out(new myTask(i));
 return EOS;
}};
struct myNode2: ff_node {
 void *svc(void *task) {
 return task;
}};
struct myNode3: ff_node {
 void *svc(void * task) {
 f3((myTask*)task);
 return GO_ON;
}};
myNode1 _1;
myNode2 _2;
myNode3 _3;
ff_pipe<myTask> pipe(&_1,&_2,&_3);
pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to
generate a stream of tasks

● Here, the first stage generates 10
tasks and then EOS

● The second stage just produces in
output the received task

● Finally, the third stage applies the
function f3 to each stream element
and does not return any tasks

pipeline pattern

 12

Simple ff_pipe examples

● Let's comment on the code of the 2 simple tests presented in the
FastFlow tutorial:

– hello_pipe.cpp

– hello_pipe2.cpp

 13

Core patterns: ff_farm

struct myNode: ff_node {
 void *svc(void * t) {
 F(reinterpret_cast<Task*>(t));
 return GO_ON;
}};

std::vector<ff_node*> Workers;
Workers.push_back(new myNode);
Workers.push_back(new myNode);
ff_farm<> myFarm(Workers);

ff_pipe<myTask>
 pipe(&_1, &myFarm, ….);
pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided via
an std::vector

● By providing different ff_node(s) it is easy to
build a MISD farm

● By default the farm has an Emitter and a
Collector, the Collector can be removed
using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by
providing suitable ff_node objects

● Default task scheduling is pseudo round-
robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possible to implement user's specific
scheduling strategies (ff_send_out_to)

● Farms and pipeline can be nested and
composed in any way

task-farm pattern

 14

Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the
FastFlow tutorial:

– hello_farm.cpp

– hello_farm2.cpp

● Then, let's take a look on how to define Emitter an Collector in a
farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp

 15

Examples: image filtering (img.cpp &
img_pipe.cpp)

// 4-stage pipeline
ff_pipe<Task> pipe(new Read(filenames), BlurFilter, EmbossFilter, Write);
pipe.run_and_wait_end();

// 1st stage
struct Read: ff_node {
 void *svc(void *) {
 for(long i=0;i<num_images;++)
 Image *img = new Image;
 Img->read(filename);
 Task *task = new Task(img,filename);
 ff_send_out(task);
 }
 return EOS; // End-Of-Stream
};

// 2nd stage
Task *BlurFilter(Task *in, ff_node*const) {
 in->image->blur(); return in;
}

// 3rd stage
Task *EmbossFilter(Task *in, ff_node*const) {
 in->image->blur(); return in;
}

// 4th stage
Task *Write(Task *in, ff_node*const) {
 in->image->write(in->name);
 delete in->image;
 delete in;
 return (Task*)GO_ON;
}

 16

Examples: image filtering
(img_pipe+farm.cpp)

// 4-stage pipeline
ff_farm<> farmBlur(BlurFilter);
farmBlur.remove_collector();
ff_farm<> farmEmboss(EmbossFilter);
ff_pipe<Task> pipe(new Read(filenames), &farmBlur, &farmEmboss, Writer);
pipe.run_and_wait_end();

// ff_node wrapper to the Write function
struct Writer: ff_minode {
 void *svc(void *task) {
 return Write(reinterpret_cast<Task*>(task), this);
};

Other nodes are the same as before

 17

Examples: image filtering

Other simple transformations

Let's see the code and how
It works !

 18

Proposed exercises using ff_pipe &
ff_farm

● Simple file compressor using miniz.c:

– The sequential implementation is given simplecomp.cpp

– The task is to implement both a pipeline implementation and a
task-farm implementation of the same code.

● simplecomp_pipe.cpp
● simplecomp_farm.cpp

– HINT: the structure is quite similar to img_pipe.cpp and
img_farm.cpp, respectively.

● A more complex and efficient implementation is left as homework

● One possible solution for each exercise will be provided at the end of
the session

 19

High-level patterns

● Here we consider ParallelFor ParallelForReduce as data-
parallel patterns

● Macro-Data-flow (MDF) as data-flow pattern (or task-parallel
pattern)

● Pipeline and task-farm are high-level patterns as well !

● Other patterns available in FastFlow are:

– PoolEvolution for modelling evolutionary applications

– Stencil2D and StencilReduce patterns for iterative stencil-
like computation (multi-core and CUDA-based GPGPUs)

– Divide&Conquer (preliminary version)

– oclMap and cudaMap patterns

 20

High-level patterns: ParallelFor

// sequential code
for(long i=0;i<N; i+=2)
 A[i] = f(i);

● Loops with independent iterations may be
parallelised using the ParalleFor pattern

● The ParallelFor interface is in the
parallel_for.hpp file

● It is implemented on top of the task-farm
with a suitable scheduling strategy

● There are many different methods that
can be used

● Iteration scheduling provided:

– Default static scheduling

– Static scheduling with interleaving by
using parallel_for_static

– Dynamic scheduling

● Also provides active scheduling (by using
farm's Emitter) and passive scheduling

// parallel code
ParallelFor pf;
pf.parallel_for(0, N, 2, [&A](const long i) {
 A[i] = f(i);
});

map pattern

 21

High-level patterns: ParallelForReduce

// sequential code: summing all elements
// of an array
double sum=0.0;
for(long i=0;i<N; i++)
 sum += A[i];

● A ParallelFor plus a reduction operation

– associative and commutative
operation

● The ParallelForReduce interface is in the
parallel_for.hpp file

● It is implemented on top of the task-farm
with a suitable scheduling strategy

● Executes a local reduction in the body
part using a private variable plus a final
reduction operation using a combination
function.

● Scheduling strategies are the same as
those provided by the ParallelFor pattern

// parallel code
ParallelForReduce<double> pfr;
pf.parallel_for_reduce(sum, 0.0, 0,N,
 [&A](const long i, double &sum) {
 sum +=A[i];
}, [](double &sum, const double v) {
 sum+=v;
 }
);

map-reduce pattern

 22

Simple tests using a ParallelFor

● Let's comment on the code of the 2 simple tests presented in the
FastFlow tutorial:

– hello_parfor.cpp

– arraysum.cpp

 23

High-level patterns: ff_map

struct mapWorker: ff_Map<> {
 void *svc(void *task) {
 ….
 ff_Map<>::parallel_for(...);
 ff_Map<>::parallel_reduce(....);
 return task;
 }
};

● The ff_map is just an ff_node that wraps a
ParallelForReduce pattern

● The ff_map can be used as a pipeline
stage and as a farm worker

● It is better to use the ff_map than a plain
ParallelFor in a pipeline or farm
computations because the run-time
knows that the given stage/worker is
parallel

– Better thread mapping strategies and
optimizations can be applied

map pattern inside
stream parallel patterns

 24

Examples: Sobel filter (ffsobel.cpp)

struct sobelStage: ff_Map<> {
 sobelStage(int mapwks):
 ff_Map<>(mapwrks, true) {};

 void *svc(void *t) {
 Task *task=reinterpret_cast<Task*>(t);
 Mat src = *task->src, dst= *task->dst;
 ff_Map<>::parallel_for(1,src,src.row-1,
 [src,&dst](const long y) {
 for(long x=1;x<src.cols-1;++x) {
 …...
 dst.at<x,y> = sum;
 }
 });
 const std::string outfile=“./out“+task->name;
 imwrite(outfile, dst);
 }

● The first stage reads a number of
images from disk one by one,
converts the images in B&W and
produces a stream of images for the
second stage

● The second stage applies the Sobel
filter to each input image and then
writes the output image into a
separate disk directory

Let's see the code!

 25

Proposed exercises using ParallelFor &
ParallelForReduce

● Simple matrix computation. Given in input a square matrix of size N

compute the resulting value as:

For example, given the following 3x3 matrix, then:

 result = 1 + 2*4 + 3*7 + 5 + 6*8 + 9 = 92

– The sequential implementation is given in matcomp.cpp

– The objective is to implement the computation in parallel using
the ParallelForReduce pattern.

1 2 3

4 5 6

7 8 9

 26

High-level patterns: ff_mdf
● The ff_mdf pattern targets macro-data-flow

computations

● Is a general approach to parallelism based only on
data dependencies.

● The computation is expressed by the data-flow graph,
i.e. DAG whose nodes are macro-instructions and arcs
are pure data-dependencies

– A macro-instruction can be a set of simple
instractions or a complex kernel function.

● By using the ff_mdf pattern, the user has to specify
data-dependencies, i.e. declaring which are INPUT
and OUTPUT data

● The AddTask method of the ff_mdf class is used to
generate tasks

● The run-time, automatically, takes care of
dependencies and then schedules ready tasks to
Workers which executes ready (fireable) instructions
in parallel

void taskGen(ff_mdf*const mdf) {
 ….
 const param_info _1= {&A, INPUT};
 const param_info _2 = {&B, INPUT};
 const param_info _3 = {&C, OUTPUT};
 std::vector<param_info> Param = {_1,_2,_3};

 mdf->AddTask(Param, GEMM, A,B,C);
 ….
}

ff_mdf mdf(taskGen, ...);
mdf.run_and_wait_end();

data-dependency pattern

 27

A simple test using ff_mdf

Parameters<ff_mdf> P;// structure containing all parameters needed to taskGen function
ff_mdf dag(taskGen, &P); // creates the mdf object
P.A=A,P.B=B,P.C=C....P.mdf=&dag... // preparing all parameters
dag.run_and_wait_end(); // run and wait termination

// macro operations
void sum2(long *X, long *Y, long size);
void sum3(long *X, long *Y, long *Z, long size);
….
// task generator function
void taskGen(Parameters<ff_mdf> *P) {
 … auto mdf = P->mdf;

 {// A= A+B
 const param_info _1= {&A, INPUT};
 const param_info _2 = {&B, INPUT};
 const param_info _3 = {&A, OUTPUT};
 std::vector<param_info> Param = {_1,_2,_3};
 mdf->AddTask(Param, sum2, A, B, SIZE);
 }{// B= B+C
 const param_info _1= {&B, INPUT};
 const param_info _2 = {&C, INPUT};
 const param_info _3 = {&B, OUTPUT};
 std::vector<param_info> Param = {_1,_2,_3};
 mdf->AddTask(Param, sum2, B, C, SIZE);
 …...

A,B,C,D are arrays of size N

macro instructions

 28

Simple test using the ff_mdf

● Let's comment the code of the simple test presented in the FastFlow
tutorial:

– wf.cpp

 29

● Matrix multiplication using Strassen's algorithm:

– We want to compute AxB = C, A is M by P, B is P by N and C is M by N

– Partitioning the matrices in 4 equal-size blocks we have:

S1 = A11 + A22 S2 = B11 + B22 P1 = S1 * S2
S3 = A21 + A22 P2 = S3 * B11
S4 = B12 – B22 P3 = A11 * S4
S5 = B21 – B11 P4 = A22 * S5
S6 = A11 + A12 P5 = S6 * B22
S7 = A21 – A11 S8 = B11 + B12 P6 = S7 * S8
S9 = A12 – A22 S10 = B21 + B22 P7 = S9*S10
C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 - P2 + P3 + P6

– The sequential code is provided in the strassen.cpp file

● Write a parallel version using the ff_mdf pattern.

Proposed exercise using ff_mdf

A11 A12

A21 A22

B11 B12

B21 B22
X

C11 C12

C21 C22
=

 30

Thanks for participating!

For any questions or comments please send an e-mail
to torquati@di.unipi.it

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30

