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Outline

● FastFlow basic concepts

– skeletons and patterns 

– stream concept

– building blocks
● Core patterns:

– pipeline & task-farm 
● High-level patterns:

– ParallelFor* and Map

– Macro-DataFlow (mdf)

– OpenCL StencilReduceLoop
● Targeting distributed system (basic concepts) 
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The FastFlow tutorial
● Ask for the VM password in case you want to use the Linux VM provided by GridKa

● Update the FastFlow version contained in the VM

– cd fastflow

– svn update

● The FastFlow tutorial is available as pdf file on the GridKa wiki page 

–  “FastFlow tutorial”  

● http://wiki.scc.kit.edu/gridkaschool/index.php/Main_Page

● All tests and examples described in the tutorial are available as a separate tarball file: 
fftutorial_source_code.tgz 

– can be downloaded from the wiki page

● In the tutorial source code there are a number of very simple examples covering almost all aspects of using 
pipeline, farm, ParallelFor, map, mdf, etc..

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example: image filtering, block-based 
matrix multiplication, mandelbrot set computation, dot-product, etc...
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Objectives 

● Understand the Structured Parallel Programming methodology

● Have a good idea of the FastFlow framework

– how it works and its main features

– also, weakness and strength points

● To be able to write simple FastFlow programs
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Structured parallel programming

● Structured parallel programming aims to provide standard (and 
effective) rules for composing parallel computations in a machine-
independent way

– Goal: reducing the complexity of parallelization problems by 
introducing constraints

i.e. restricting the computation structure

– Modularity portability and programmability are the keywords

● Parallel paradigms are the base components of parallel applications

● Using structured parallel programming force to think parallel

● The programmer is relieved from all concerns related to the 
implementation, he/she concentrates “only” on computational aspects

Separation of concerns principles
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Skeletons & Patterns

● From HPC community

● From early '90

● Pre-defined parallel high-order 
functions provided as constructs 
or lib calls

● From SW engineering  community

● From early '00

● “Recipes“ to handle parallelism 
(name, problem, algorithms, 
solutions, ...)

● The same concept at different abstraction levels

● We use the two terms patterns and skeletons, interchangeably. 

– We want to emphasise the similarities of these two concepts

Algorithmic Skeletons
Parallel Design

Patterns
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Using patterns

run-time
support

System developer

Map, Reduce, Stencil,....

Pipeline, Task-Farm

Divide&Conquer, MDF, ….

Avalilable parallel 
patterns

High-level code
App developer

Which pattern ?

insta
ntia

teco
mpose

se
lect

iterate

exte
nd

Data Parallel 

Stream Parallel 

Task Parallel 

Problem

multi-core

many-core

cluster

Target platforms
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Assessment

  8

Separation of 
concerns

● Application programmer: what is computed
● System programmer: how the result is computed

Inversion of 
control

● Program structure suggested by the programmer
● The run-time selects the optimization for the target platform 

Performance
● Close to hand tuned code (sometimes better)
● Reduced development time. Lower total cost to solution.  

   “Structured Parallel Programming” by Marco Danelutto

    Available on-line as SPM course material at M. Danelutto web page 

    http://www.di.unipi.it/~marcod
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Stream concept

● The stream concept is important in FastFlow 

● A stream is a sequence of values (possibly infinite), coming from a source

– Stream of images, stream of network packets, stream of matrices, stream of 
files, …..

● A streaming application can be seen as a work-flow graph whose nodes are 
computing nodes (sequential or parallel) and arcs are channels bringing 
streams of data.

● Streams may be either “primitive“ (i.e. coming from HW sensors, network 
interfaces, ….) or can be generated internally by the application (“fake 
stream”)

● Typically in a stream based computation the first stage receives  (or reads) 
data from a source and produces tasks for next stages.
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Stream examples

● “real streams“

– In these cases it is really important to satisfy minimum processing requirements 
(bandwidth, latency, etc...) in order to not lose data coming from the source

● “fake streams”: streams produced by unrolling loops

– You don't have an “infinite“ source of data

– The source is a software module    for(i=start; i<stop; i+=step)
      allocate data for a task
      create a task
      send out the task
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Patterns operating on stream

● pipeline: computes F4(F3(F2(F1(x)))) for each x

– Pipeline computing elements are called stages

● task-farm (or farm), models functional replication

– Sometimes called also “master-worker”

– Computing elements called: Emitter (E), Worker (computing F) and Collector (C)

– The Emitter,  schedules tasks towards the Workers

– The Collector, gathers tasks from Workers 

 



  12

The FastFlow layers

● C++ class library

● Promotes (high-level) structured parallel 
programming

● It aims to be flexible and efficient enough to target 
multi-core, many-core and distributed  
heterogeneous systems.

● Layered design:

– Building blocks minimal set of mechanisms: 
channels, code wrappers, combinators.

– Core patterns streaming patterns (pipeline and task-
farm) plus the feedback pattern modifier

– High-level patterns aim to provide flexible reusable 
parametric patterns for solving specific parallel 
problems

http://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow
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Building blocks

● Minimal set of efficient mechanisms and functionalities

● Nodes are concurrent entities (i.e. POSIX threads)

● Arrows are channels implemented as SPSC lock-free queue

– bounded or unbounded in size
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Stream Parallel Patterns (“core” 
patterns)

ff_Pipe<myTask> pipe(S1,S2,...,Sn);
pipe.run_and_wait_end();

std::vector<std::unique_ptr<ff_node> >  W;
myEmitter E;
myCollector C;

ff_Farm<myTask> farm(std::move(W), E, C);
farm.run_and_wait_end();

pipeline

task-farm ff_node

Emitter: 
schedules input data items

Collector: 
gathers results
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Stream Parallel Patterns (“core” 
patterns)

pipeline

task-farm

Specializations

Patterns
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Core patterns composition
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Core patterns: sequential ff_node

struct myNode: ff_node_t<TIN,TOUT> {
  int svc_init() { // optional
    // called once for initialization purposes
    return 0;  // <0 means error 
  }
  TOUT *svc(TIN * task) {
    // do something on the input task
    // called each time a task is available 
    return task; // also EOS, GO_ON, ….
  }; 
  void svc_end() {
    // called once for termination purposes
    // called if EOS is either received in input 
    // or it is generated by the node
  }
};

● A sequential ff_node is an active object 
(thread)

● Input/Output tasks (stream elements) are 
memory pointers

● The user is responsible for memory 
allocation/deallocation of tasks

– FF provides a memory allocator (not 
introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more tasks to 
send out, give me another input task (if 
any)“

code wrapper pattern
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ff_node: generating and absorbing 
tasks

struct myNode1: ff_node_t<Task> {
  Task *svc(Task *) {
      // generates N tasks and then EOS
      for(long i=0;i<N; ++i)
         ff_send_out(new Task);
      return EOS;
  }; 
};

code wrapper pattern

struct myNode2: ff_node_t<Task> {
  Task *svc(Task * task) {
      // do something with the task
      do_Work(task);
      delete task;
      return GO_ON; // it does not send out task
  }; 
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by using the 
ff_send_out method or simply returning task from the svc method

● Typically myNode2 is the last stage of a pipeline computation, it gets in input tasks 
without producing any outputs
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Core patterns: ff_pipe

 struct myNode1: ff_node_t<myTask> {
   myTask *svc(myTask *) {
         for(long i=0;i<10;++i)
             ff_send_out(new myTask(i));
         return EOS;
 }};
 struct myNode2: ff_node_t<myTask> {
   myTask *svc(void *task) {
         return task;
 }};
 struct myNode3: ff_node_t<myTask> {
   myTask *svc(void * task) {
         f3(task);
         return GO_ON;
 }}; 
 myNode1 _1; 
 myNode2 _2;
 myNode3 _3; 
 ff_Pipe<> pipe(_1,_2,_3);
 pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to generate a stream 
of tasks

● Here, the first stage generates 10 tasks and 
then EOS

● The second stage just produces in output the 
received task

● Finally, the third stage applies the function f3 
to each stream element and does not return any 
tasks

pipeline pattern
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Simple ff_pipe examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_pipe.cpp 

– hello_pipe2.cpp
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Core patterns: ff_farm                    (1)

 struct myNode: ff_node_t<myTask> {
     myTask *svc(myTask * t) {
        F(t);
        return GO_ON;
 }}; 

 std::vector<std::unique_ptr<ff_node>> W; 
 W.push_back(make_unique<myNode>());
 W.push_back(make_unique<myNode>()); 

  ff_Farm<myTask>
                       myFarm(std::move(W));

 ff_Pipe<myTask> 
       pipe(_1, myFarm, <...other stages...>);

 pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided  via an 
std::vector

● By providing different ff_node(s) it is easy to build a 
MISD farm (each worker computes a different 
function)

● By default the farm has an Emitter and a Collector, 
the Collector can be removed using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by providing 
suitable ff_node objects 

● Default task scheduling is pseudo round-robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possibility to implement user's specific scheduling 
strategies (ff_send_out_to)

● Farms and pipelines can be nested and composed in 
any way

task-farm pattern



  22

Core patterns: ff_farm                    (2)

 myTask *F(myTask * t,ff_node*const) {
     …. <work on t> ….
     return t;      
 } 

 ff_Farm<myTask> myFarm(F, 5);

● Simpler syntax

● By providing a function having a suitable 
signature together with the number of replicas

– 5 replicas in the code aside

● Default scheduling or auto-scheduling

task-farm pattern

● Ordered task-farm pattern

● Tasks are produced in output in the same order as 
they arrive in input

● In this case it is not possible to redefine the 
scheduling policy 

 myTask *F(myTask * t,ff_node*const) {
     …. <work on t> ….
     return t;      
 } 

 ff_OFarm<myTask> myFarm(F, 5);
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Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_farm.cpp 

– hello_farm2.cpp

● Then, let's take a look at how to define Emitter an Collector in a farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp
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Examples: image filtering (img.cpp & 
img_pipe.cpp) 

// 4-stage pipeline
ff_Pipe<Task> pipe( read, blur, emboss, write );
pipe.run_and_wait_end();

// 1st stage
struct Read: ff_node_t<Task> {
  Task *svc(Task *) {
     for(long i=0;i<num_images;++)
        Image *img = new Image;
        Img->read(filename);
        Task *task = new Task(img,filename);
        ff_send_out(task);
  }
  return EOS; // End-Of-Stream
}; 

// 2nd stage
Task *BlurFilter(Task *in, ff_node*const) {
    in->image->blur();   return in;
}

// 3rd stage
Task *EmbossFilter(Task *in, ff_node*const) {
    in->image->blur();     return in;
}

// 4th stage
Task *Write(Task *in, ff_node*const) {
    in->image->write(in->name);
    delete in->image;
    delete in;
    return reinterpret_cast<Task*>(GO_ON); 
}
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Examples: image filtering 
(img_pipe+farm.cpp) 

 ff_Farm<Task> farmBlur(BlurFilter, numBlurWorkers);
 farmBlur.remove_collector();
 ff_Farm<Task> farmEmboss(EmbossFilter, numEmbosWorkers);
 // 4-stage pipeline
 ff_Pipe<Task> pipe( read, farmBlur, farmEmboss, write ); 
 pipe.run_and_wait_end();

// ff_node wrapper to the Write function
struct Writer: ff_minode_t<Task> {
  Task *svc(Task *task) {
     return  Write(task, this);
};

Other nodes are the same as before
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Examples: image filtering 

Other simple transformations

Take a look at the code and how it works !



  27

Proposed exercises using ff_pipe & 
ff_farm 

● Simple file compressor using miniz.c:

– The sequential implementation is given simplecomp.cpp

– The task is to first implement a pipeline version (read → compute → write), then 
transform the sequential compute stage in a task-farm.

● simplecomp_pipe.cpp
● simplecomp_farm.cpp

– HINT: the structure is quite similar to the one used in the img_pipe.cpp and 
img_farm.cpp, respectively. 

● A more complex and efficient implementation is left as homework 

– We will discuss together some possible solutions
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Example: statefull pipeline

Receiver rec(port); // recv quotes from the market
while( recv.receive(quote) ) {
  filterQuote(quote);  // filters data
  If ((wid=winManagement(quote, win_size, win_slide)) != -1) {
     computeWindow(wid, result);  // data ready 
     writeOnDisk(result);  // write result
   }
}

Sequential pseudo-code: 

● Simplified financial application

● WindowManagement is based on a hash-table containing different buffers for each stock 
symbol

● The application is logically a 3-stage pipeline (receive, compute, write) but the middle 
stage cannot be replicated …. unless ….
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Example: statefull pipeline

struct firstStage: ff_node_t<quote_t> {
  quote_t *svc(quote_t *in) { return filter(*in); }
};
….
Receiver rec(port);
firstStage  first(rec);

std::vector<std::unique_ptr<ff_node>> W;
for(long i=0;i<nworkers;++i) 
     W.push_back(make_unique<compute>         
                               (win_size,win_slide));
ff_Farm<task_t,ret_t> farm(std::move(W)); 
Scheduler<decltype<SchedF> Sched(schedF);
farm.add_emitter(Sched);
farm.remove_collector();

lastStage  last(writerOnDisk);

ff_Pipe<> pipe(first, farm, last);
pipe.run_and_wait_end();

Parallel structure: 

● … unless … the hast-table is partitioned among all workers and the quotes are 
scheduled by stock symbol

Potential load balancing problems !
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High-level patterns

● Here we consider 

– ParallelFor* data-parallel patterns

● ff_Map, that can be used in pipeline and task-farm

– Macro-Data-flow (MDF) as data-flow pattern (or task-parallel pattern)

● Pipeline and task-farm are high-level patterns as well !

● Other patterns available in FastFlow are:

– PoolEvolution for modelling evolutionary applications

– StencilReduceLoop patterns for iterative stencil-like computation (multi-
core, CUDA/OpenCL-based GPUs)

● We will introduce some basic concept later



  31

High-level patterns: ParallelFor

// sequential code
for(long i=0;i<N; i+=2)
   A[i] = f(i);

● Loops with independent iterations may be 
parallelised using the ParalleFor pattern

● The ParallelFor interface is in the parallel_for.hpp 
file 

● It is implemented on top of the task-farm with a 
suitable scheduling strategy 

● There are many different methods that can be used

● Iteration scheduling provided:

– Default static scheduling

– Static scheduling with interleaving by using 
parallel_for_static

– Dynamic scheduling

● Also provides active scheduling (by using farm's 
Emitter) and passive scheduling

// parallel code
ParallelFor pf; 
pf.parallel_for(0, N, 2, [&A](const long i) {
     A[i] = f(i);
});

map pattern
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High-level patterns: ParallelForReduce

// sequential code: summing all elements
// of an array
double sum=0.0;
for(long i=0;i<N; i++)
   sum += A[i];

● A ParallelFor plus a reduction operation

– associative operation 

● The ParallelForReduce interface is in the 
parallel_for.hpp file 

● It is implemented on top of the task-farm with a 
suitable scheduling strategy 

● Executes a local reduction in the body part using a 
private variable plus a final reduction operation 
using a combination function.

● Scheduling strategies are the same as those provided 
by the ParallelFor pattern

// parallel code
ParallelForReduce<double> pfr; 
pf.parallel_for_reduce(sum, 0.0, 0,N,
          [&A](const long i, double &sum) {
             sum +=A[i];
          }, 

  [](double &sum, const double v) { 
             sum+=v;
          }
);

map-reduce pattern
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High-level patterns:
ParallelForPipeReduce

● Useful when the reduction function has to be 
executed serially

● Offers the option to compute the Map part in 
pipeline with the Reduce part. 

● The ParallelForPipeReduce interface is in the 
parallel_for.hpp file 

● Scheduling strategies are the same as those provided 
by the ParallelFor pattern

map-reduce pattern



  34

Simple tests using a ParallelFor

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_parfor.cpp 

– arraysum.cpp
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High-level patterns: ff_Map

struct mapWorker: ff_Map<> {
  void *svc(void *task) {
     ….
    ff_Map<>::parallel_for(...);
    ff_Map<>::parallel_reduce(....);
    return task;
  }
};

● The ff_Map is just an ff_node that wraps a 
ParallelForReduce pattern

● The ff_Map can be used as a pipeline stage and as a 
farm worker

● It is better to use the ff_Map than a plain ParallelFor 
in a pipeline or farm computations because the run-
time knows that the given stage/worker is parallel

– Better thread mapping strategies and 
optimizations can be applied

map pattern inside
stream parallel patterns
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Examples: Sobel filter (ffsobel.cpp) 

struct sobelStage: ff_Map<Task> {
   sobelStage(int mapwks): 
       ff_Map<Task>(mapwrks, true) {};

    Task *svc(Task*task) {
      Mat src = *task->src, dst= *task->dst;
      ff_Map<>::parallel_for(1,src,src.row-1,
           [src,&dst](const long y) {
              for(long x=1;x<src.cols-1;++x) {
                …...
                dst.at<x,y> = sum;
              }
            });
      const std::string outfile=“./out“+task->name;
      imwrite(outfile, dst);
    }

● The first stage reads a number of images 
from disk one by one, converts the images 
in B&W and produces a stream of images 
for the second stage

● The second stage applies the Sobel filter to 
each input image and then writes the output 
image into a separate disk directory

Let's see the code!
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Examples: Mandelbrot set 

Data-partitioning may have a big impact on the performance

● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation 

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly
leads to load unbalanced computation and 

poor performance

– Let's consider the minimum computation unit a single image line (image 
size 2048x2048, max 103 iterations per point)

● ParallelFor Static partitioning of lines (48 workers)        MaxSpedup 14
● ParallelFor Dynamic partitioning of lines (48 workers)  MaxSpeedup 37 
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Examples: Mandelbrot set              (2) 

● Suppose now we want to compute a number of Mandelbrot images (for 
example varying the computing threshold per point)

● We have basically two options:

1. One single parallel-for inside a sequential for iterating over all different threshold 
points

2. A task-farm with map workers implementing 
two different scheduling strategies 

● Which one is better having limited resources ?

– Depends on many factors, too difficult to say in advance

for_each threshold values
    parallel_for ( Mandel(threshold));

Moving quickly between the two solutions 
is the key point

......
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Proposed exercises using ParallelFor & 
ParallelForReduce 

● Finding the minimum and the index of the minimum value in an array of integer 
values of size N. 

Given the following array:    

                        

we want as output the pair <8, 2>

– The sequential implementation is given in arrayminindex.cpp

– The objective is to implement the computation in parallel using the ParallelFor* 
patterns. 

0 1 2 3 4 5 6 7 8 9

31 52 11 13 3 12 23 64 2 12
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High-level patterns: ff_mdf
● The ff_mdf pattern targets macro-data-flow computations

● Is a general approach to parallelism based only on data 
dependencies.

● The computation is expressed by the data-flow graph, i.e. 
DAG whose nodes are macro-instructions and arcs are pure 
data-dependencies

– A macro-instruction can be a set of simple instractions 
or a complex kernel function.

● By using the ff_mdf pattern, the user has to specify data-
dependencies, i.e. declaring which are INPUT and 
OUTPUT data

● The AddTask method of the ff_mdf class is used to 
generate tasks

● The run-time, automatically, takes care of dependencies 
and then schedules ready tasks to Workers which executes 
ready (fireable) instructions in parallel 

void taskGen(ff_mdf*const mdf) {
   ….
   const param_info _1=  {&A, INPUT};
   const param_info _2 = {&B, INPUT};
   const param_info _3 = {&C, OUTPUT};
   std::vector<param_info> Param = {_1,_2,_3};
   
   mdf->AddTask(Param, GEMM, A,B,C);
   ….
}

ff_mdf mdf(taskGen, ...); 
mdf.run_and_wait_end();  

data-dependency pattern
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A simple test using ff_mdf

Parameters<ff_mdf> P;// structure containing all parameters needed to taskGen function
ff_mdf dag(taskGen, &P);  // creates the mdf object
P.A=A,P.B=B,P.C=C....P.mdf=&dag...   // preparing all parameters
dag.run_and_wait_end();  // run and wait termination

// macro operations
void sum2(long *X, long *Y, long size);
void sum3(long *X, long *Y, long *Z, long size);
….
// task generator function
void taskGen(Parameters<ff_mdf> *P) {
   … auto mdf = P->mdf;
   
   {// A= A+B
     const param_info _1=  {&A, INPUT};
     const param_info _2 = {&B, INPUT};
     const param_info _3 = {&A, OUTPUT};
     std::vector<param_info> Param = {_1,_2,_3};
     mdf->AddTask(Param, sum2, A, B, SIZE);
   }{// B= B+C
     const param_info _1=  {&B, INPUT};
     const param_info _2 = {&C, INPUT};
     const param_info _3 = {&B, OUTPUT};
     std::vector<param_info> Param = {_1,_2,_3};
     mdf->AddTask(Param, sum2, B, C, SIZE);
   …...

A,B,C,D are arrays of size N

macro instructions
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● Matrix multiplication using Strassen's algorithm:

– We want to compute AxB = C, A is MxP, B is PxN and C is MxN

– Partitioning the matrices in 4 equal-size blocks we have:

S1  = A11 + A22   S2  = B11 + B22  P1  = S1 * S2
S3  = A21 + A22   P2  = S3 * B11
S4  = B12 – B22    P3  = A11 * S4
S5  = B21 – B11    P4  = A22 * S5
S6  = A11 + A12   P5  = S6 * B22
S7  = A21 – A11   S8  = B11 + B12   P6  = S7 * S8
S9  = A12 – A22   S10 = B21 + B22  P7  = S9*S10
C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 - P2 + P3 + P6

● Let's take a look at the code examples/strassen/strassen_mdf.cpp in the fastflow folder.

Strassen algorithm example using 
ff_mdf 

A11 A12

A21 A22

B11 B12

B21 B22
X

C11 C12

C21 C22
=
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Block Cholesky and LU factorizations 

DAG represents, 5 tiles, left-looking
version of Cholesky algorithm

D. Buono, M. Danelutto, T. De Matteis, G. Mencagli and M. 
Torquati  “A light-weight run-time support for fast dense linear 
algebra on multi-core” in PDCN 2014 conference, 2014 

● Much more complex data-flow graphs

● The DAG is huge for big matrices

– cannot be entirely stored in memory

– Have to be generated dynamically

● The ff_mdf pattern allows to generate

the graph dynamically and overlap 

the graph generation phase with the 

computation
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Targeting GPUs, basic concepts 
(not yet covered in the FastFlow tutorial)
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The Loop-Of-Stencil-Reduce pattern

● We introduced the Loop-Of-Stencil-Reduce pattern 

– Specifically targeting iterative Map+Reduce algorithm

– Both 1D and 2D computation on multiple GPUs

– On top of this pattern we implemented: map, reduce and map+reduce

– OpenCL and CUDA version
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Stencil computation
1D 2D

- g : list of T → list of T is the elemental function
- Si = [a’i-k ,  … , a’i , … , a’i+k] is the i-th neighborhood
- we consider the case where k is a constant value
- a’ is the extension of a with suitable extra items to deal with the border 
neighborhood computation
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ff_stencilReduceLoop* run-time 
behaviour

// d2h input data, allocate double-buffering 

(in_d_ptr, out_d_ptr, env_d_ptr) = allocatewrite(input, env) 

while cond

  //  swap buffers, swap halo among different devices

  swap_buffers_and_halo (in_d_ptr, out_d_ptr)

  out_d_ptr = stencil <f_kernel> (in_d_ptr, env_d_ptr) // DEV 

  part_d_ptr = reduce <op_kernel> (out_d_ptr) // DEV 

    partial_data = read(part_d_ptr)

  cond = reduce op partial_data // host final reduction

// h2d−copy output, release buffers

output = releaseread (in_d_ptr, out_d_ptr, env_d_ptr)
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ff_stencilReduceLoop*

stencilReduceLoopOCL

GPU1 GPU2

Tin Tout

Tocl

... ...

– Using OpenCL (for CUDA we have the same concepts)

– Implemented as a “special” kind of FastFlow node

– Each GPU is managed by a different internal “accelerator”

– Tocl is a template type encapsulating both input and output GPU types

● It is used as an interface type via the setTask/releaseTask methods. 

– Using the ff_stencilReduceLoopOCL we implemented:

– ff_mapOCL, ff_reduceOCL, ff_mapReduceOCL

– Can be used as a pipeline stage or as a worker in a task-farm
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Targeting GPUs in a pipeline

● Pipeline computation example:

– Tin/Tout is myTask

– Tocl is oclTask (must subclass from baseOCLTask)

● We want to compute a Map only on the vector B 

– B is non contiguous in memory // OpenCL interface type for the kernel2 node   (Tocl) 
struct oclTask: baseOCLTask<myTask, float, float> {
   // called by the run-time for each input task
   void setTask(const Task *task) {
        const size_t size = computeSize(B);
        buffer = new float[size];
        copyBuffer(B, buffer, size);
        //set input and output host pointers
        setInPtr(buffer, size); setOutPtr(buffer);
   }
   // called by the run-time at the end of task execution
   void releaseTask(Task *task) {

copyBack(task->B, buffer); // copy results back to B 
delete [] buffer;  

    }
   float *buffer;
}; 

// this is the stream type (Tin/Tout)
struct myTask {
 
  std::vector<float> A;
  std::vector<std::vector<float> > B;
  ….
  std::string command;
  …. 

};

kernel 1 kernel 2 kernel 3

GPU

myTask myTask

float []
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Examples: Sobel filter

● Let's take a quick look at the ff_pipe+mapOCL.cpp example in the fastflow/tests/ocl 
folder. 
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Targeting distributed systems, basic 
concepts 

(not yet covered in the FastFlow tutorial)
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Targeting distributed systems 
(concepts) 

● Building blocks:

– ff_dnode extend the ff_node class  

– Communication patterns:

● Unicast: one-to-one unidirectional channel
● Broadcast: one-to-many, the same data is sent to all connected peers
● Scatter: one-to-many, data is split in disjoint partitions, each one sent to a 

distinct connected peer
● On-demand: one-to-one, the data is sent to one of the connected peear using a 

request-reply protocol 
● Gather-All: many-to-one, receives a data partition from all connected peers, 

and eventually the message is recomposed 
● Collectc-from-Any: one-to-one,  receives data from one of the connected peers
● TODO: Multicast, ….

–
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ff_dnode 

● A ff_dnode is an ff_node with an extra channel used to communicate with 
another dnode by using a communication pattern (external channel)

● The external channel may be specialized for input, output or both

● The idea is that only edge nodes are dnodes

● Communication patterns:

– TCP/IP networks by using the ZeroMQ library

– Infiniband networks by using Linux verbs (experimental)
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How it works 

● The user has to:

– Define and connect the application parts using proper communication 
patterns

– Prepare the data to send

– Provide the run-time with message buffers where data has to be 
received
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How to define a dnode 
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Distributed image filtering 
(img_d.cpp)
● Let's take a quick look at the img_d.cpp example which is a possible distributed 

version of the  in the img.cpp app. 

– This version uses only 2 machines

– It is just a proof-of-concept implementation
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That's (almost) all ! 
Thanks for participating!

For any questions or comments please send an e-mail 
to torquati@di.unipi.it

http://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

FastFlow project site: EU-FP7 projects using FastFlow:
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