
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

Hands-on session

 2

Outline

● FastFlow basic concepts

– skeletons and patterns

– stream concept

– building blocks
● Core patterns:

– pipeline & task-farm
● High-level patterns:

– ParallelFor* and Map

– Macro-DataFlow (mdf)

– OpenCL StencilReduceLoop
● Targeting distributed system (basic concepts)

 3

The FastFlow tutorial
● Ask for the VM password in case you want to use the Linux VM provided by GridKa

● Update the FastFlow version contained in the VM

– cd fastflow

– svn update

● The FastFlow tutorial is available as pdf file on the GridKa wiki page

– “FastFlow tutorial”

● http://wiki.scc.kit.edu/gridkaschool/index.php/Main_Page

● All tests and examples described in the tutorial are available as a separate tarball file:
fftutorial_source_code.tgz

– can be downloaded from the wiki page

● In the tutorial source code there are a number of very simple examples covering almost all aspects of using
pipeline, farm, ParallelFor, map, mdf, etc..

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example: image filtering, block-based
matrix multiplication, mandelbrot set computation, dot-product, etc...

 4

Objectives

● Understand the Structured Parallel Programming methodology

● Have a good idea of the FastFlow framework

– how it works and its main features

– also, weakness and strength points

● To be able to write simple FastFlow programs

 5

Structured parallel programming

● Structured parallel programming aims to provide standard (and
effective) rules for composing parallel computations in a machine-
independent way

– Goal: reducing the complexity of parallelization problems by
introducing constraints

i.e. restricting the computation structure

– Modularity portability and programmability are the keywords

● Parallel paradigms are the base components of parallel applications

● Using structured parallel programming force to think parallel

● The programmer is relieved from all concerns related to the
implementation, he/she concentrates “only” on computational aspects

Separation of concerns principles

 6

Skeletons & Patterns

● From HPC community

● From early '90

● Pre-defined parallel high-order
functions provided as constructs
or lib calls

● From SW engineering community

● From early '00

● “Recipes“ to handle parallelism
(name, problem, algorithms,
solutions, ...)

● The same concept at different abstraction levels

● We use the two terms patterns and skeletons, interchangeably.

– We want to emphasise the similarities of these two concepts

Algorithmic Skeletons
Parallel Design

Patterns

 7

Using patterns

run-time
support

System developer

Map, Reduce, Stencil,....

Pipeline, Task-Farm

Divide&Conquer, MDF, ….

Avalilable parallel
patterns

High-level code
App developer

Which pattern ?

insta
ntia

teco
mpose

se
lect

iterate

exte
nd

Data Parallel

Stream Parallel

Task Parallel

Problem

multi-core

many-core

cluster

Target platforms

 8

Assessment

 8

Separation of
concerns

● Application programmer: what is computed
● System programmer: how the result is computed

Inversion of
control

● Program structure suggested by the programmer
● The run-time selects the optimization for the target platform

Performance
● Close to hand tuned code (sometimes better)
● Reduced development time. Lower total cost to solution.

 “Structured Parallel Programming” by Marco Danelutto

 Available on-line as SPM course material at M. Danelutto web page

 http://www.di.unipi.it/~marcod

 9

Stream concept

● The stream concept is important in FastFlow

● A stream is a sequence of values (possibly infinite), coming from a source

– Stream of images, stream of network packets, stream of matrices, stream of
files, …..

● A streaming application can be seen as a work-flow graph whose nodes are
computing nodes (sequential or parallel) and arcs are channels bringing
streams of data.

● Streams may be either “primitive“ (i.e. coming from HW sensors, network
interfaces, ….) or can be generated internally by the application (“fake
stream”)

● Typically in a stream based computation the first stage receives (or reads)
data from a source and produces tasks for next stages.

 10

Stream examples

● “real streams“

– In these cases it is really important to satisfy minimum processing requirements
(bandwidth, latency, etc...) in order to not lose data coming from the source

● “fake streams”: streams produced by unrolling loops

– You don't have an “infinite“ source of data

– The source is a software module for(i=start; i<stop; i+=step)
 allocate data for a task
 create a task
 send out the task

 11

Patterns operating on stream

● pipeline: computes F4(F3(F2(F1(x)))) for each x

– Pipeline computing elements are called stages

● task-farm (or farm), models functional replication

– Sometimes called also “master-worker”

– Computing elements called: Emitter (E), Worker (computing F) and Collector (C)

– The Emitter, schedules tasks towards the Workers

– The Collector, gathers tasks from Workers

 12

The FastFlow layers

● C++ class library

● Promotes (high-level) structured parallel
programming

● It aims to be flexible and efficient enough to target
multi-core, many-core and distributed
heterogeneous systems.

● Layered design:

– Building blocks minimal set of mechanisms:
channels, code wrappers, combinators.

– Core patterns streaming patterns (pipeline and task-
farm) plus the feedback pattern modifier

– High-level patterns aim to provide flexible reusable
parametric patterns for solving specific parallel
problems

http://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

 13

Building blocks

● Minimal set of efficient mechanisms and functionalities

● Nodes are concurrent entities (i.e. POSIX threads)

● Arrows are channels implemented as SPSC lock-free queue

– bounded or unbounded in size

 14

Stream Parallel Patterns (“core”
patterns)

ff_Pipe<myTask> pipe(S1,S2,...,Sn);
pipe.run_and_wait_end();

std::vector<std::unique_ptr<ff_node> > W;
myEmitter E;
myCollector C;

ff_Farm<myTask> farm(std::move(W), E, C);
farm.run_and_wait_end();

pipeline

task-farm ff_node

Emitter:
schedules input data items

Collector:
gathers results

 15

Stream Parallel Patterns (“core”
patterns)

pipeline

task-farm

Specializations

Patterns

 16

Core patterns composition

 17

Core patterns: sequential ff_node

struct myNode: ff_node_t<TIN,TOUT> {
 int svc_init() { // optional
 // called once for initialization purposes
 return 0; // <0 means error
 }
 TOUT *svc(TIN * task) {
 // do something on the input task
 // called each time a task is available
 return task; // also EOS, GO_ON, ….
 };
 void svc_end() {
 // called once for termination purposes
 // called if EOS is either received in input
 // or it is generated by the node
 }
};

● A sequential ff_node is an active object
(thread)

● Input/Output tasks (stream elements) are
memory pointers

● The user is responsible for memory
allocation/deallocation of tasks

– FF provides a memory allocator (not
introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more tasks to
send out, give me another input task (if
any)“

code wrapper pattern

 18

ff_node: generating and absorbing
tasks

struct myNode1: ff_node_t<Task> {
 Task *svc(Task *) {
 // generates N tasks and then EOS
 for(long i=0;i<N; ++i)
 ff_send_out(new Task);
 return EOS;
 };
};

code wrapper pattern

struct myNode2: ff_node_t<Task> {
 Task *svc(Task * task) {
 // do something with the task
 do_Work(task);
 delete task;
 return GO_ON; // it does not send out task
 };
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by using the
ff_send_out method or simply returning task from the svc method

● Typically myNode2 is the last stage of a pipeline computation, it gets in input tasks
without producing any outputs

 19

Core patterns: ff_pipe

 struct myNode1: ff_node_t<myTask> {
 myTask *svc(myTask *) {
 for(long i=0;i<10;++i)
 ff_send_out(new myTask(i));
 return EOS;
 }};
 struct myNode2: ff_node_t<myTask> {
 myTask *svc(void *task) {
 return task;
 }};
 struct myNode3: ff_node_t<myTask> {
 myTask *svc(void * task) {
 f3(task);
 return GO_ON;
 }};
 myNode1 _1;
 myNode2 _2;
 myNode3 _3;
 ff_Pipe<> pipe(_1,_2,_3);
 pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to generate a stream
of tasks

● Here, the first stage generates 10 tasks and
then EOS

● The second stage just produces in output the
received task

● Finally, the third stage applies the function f3
to each stream element and does not return any
tasks

pipeline pattern

 20

Simple ff_pipe examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_pipe.cpp

– hello_pipe2.cpp

 21

Core patterns: ff_farm (1)

 struct myNode: ff_node_t<myTask> {
 myTask *svc(myTask * t) {
 F(t);
 return GO_ON;
 }};

 std::vector<std::unique_ptr<ff_node>> W;
 W.push_back(make_unique<myNode>());
 W.push_back(make_unique<myNode>());

 ff_Farm<myTask>
 myFarm(std::move(W));

 ff_Pipe<myTask>
 pipe(_1, myFarm, <...other stages...>);

 pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided via an
std::vector

● By providing different ff_node(s) it is easy to build a
MISD farm (each worker computes a different
function)

● By default the farm has an Emitter and a Collector,
the Collector can be removed using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by providing
suitable ff_node objects

● Default task scheduling is pseudo round-robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possibility to implement user's specific scheduling
strategies (ff_send_out_to)

● Farms and pipelines can be nested and composed in
any way

task-farm pattern

 22

Core patterns: ff_farm (2)

 myTask *F(myTask * t,ff_node*const) {
 …. <work on t> ….
 return t;
 }

 ff_Farm<myTask> myFarm(F, 5);

● Simpler syntax

● By providing a function having a suitable
signature together with the number of replicas

– 5 replicas in the code aside

● Default scheduling or auto-scheduling

task-farm pattern

● Ordered task-farm pattern

● Tasks are produced in output in the same order as
they arrive in input

● In this case it is not possible to redefine the
scheduling policy

 myTask *F(myTask * t,ff_node*const) {
 …. <work on t> ….
 return t;
 }

 ff_OFarm<myTask> myFarm(F, 5);

 23

Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_farm.cpp

– hello_farm2.cpp

● Then, let's take a look at how to define Emitter an Collector in a farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp

 24

Examples: image filtering (img.cpp &
img_pipe.cpp)

// 4-stage pipeline
ff_Pipe<Task> pipe(read, blur, emboss, write);
pipe.run_and_wait_end();

// 1st stage
struct Read: ff_node_t<Task> {
 Task *svc(Task *) {
 for(long i=0;i<num_images;++)
 Image *img = new Image;
 Img->read(filename);
 Task *task = new Task(img,filename);
 ff_send_out(task);
 }
 return EOS; // End-Of-Stream
};

// 2nd stage
Task *BlurFilter(Task *in, ff_node*const) {
 in->image->blur(); return in;
}

// 3rd stage
Task *EmbossFilter(Task *in, ff_node*const) {
 in->image->blur(); return in;
}

// 4th stage
Task *Write(Task *in, ff_node*const) {
 in->image->write(in->name);
 delete in->image;
 delete in;
 return reinterpret_cast<Task*>(GO_ON);
}

 25

Examples: image filtering
(img_pipe+farm.cpp)

 ff_Farm<Task> farmBlur(BlurFilter, numBlurWorkers);
 farmBlur.remove_collector();
 ff_Farm<Task> farmEmboss(EmbossFilter, numEmbosWorkers);
 // 4-stage pipeline
 ff_Pipe<Task> pipe(read, farmBlur, farmEmboss, write);
 pipe.run_and_wait_end();

// ff_node wrapper to the Write function
struct Writer: ff_minode_t<Task> {
 Task *svc(Task *task) {
 return Write(task, this);
};

Other nodes are the same as before

 26

Examples: image filtering

Other simple transformations

Take a look at the code and how it works !

 27

Proposed exercises using ff_pipe &
ff_farm

● Simple file compressor using miniz.c:

– The sequential implementation is given simplecomp.cpp

– The task is to first implement a pipeline version (read → compute → write), then
transform the sequential compute stage in a task-farm.

● simplecomp_pipe.cpp
● simplecomp_farm.cpp

– HINT: the structure is quite similar to the one used in the img_pipe.cpp and
img_farm.cpp, respectively.

● A more complex and efficient implementation is left as homework

– We will discuss together some possible solutions

 28

Example: statefull pipeline

Receiver rec(port); // recv quotes from the market
while(recv.receive(quote)) {
 filterQuote(quote); // filters data
 If ((wid=winManagement(quote, win_size, win_slide)) != -1) {
 computeWindow(wid, result); // data ready
 writeOnDisk(result); // write result
 }
}

Sequential pseudo-code:

● Simplified financial application

● WindowManagement is based on a hash-table containing different buffers for each stock
symbol

● The application is logically a 3-stage pipeline (receive, compute, write) but the middle
stage cannot be replicated …. unless ….

 29

Example: statefull pipeline

struct firstStage: ff_node_t<quote_t> {
 quote_t *svc(quote_t *in) { return filter(*in); }
};
….
Receiver rec(port);
firstStage first(rec);

std::vector<std::unique_ptr<ff_node>> W;
for(long i=0;i<nworkers;++i)
 W.push_back(make_unique<compute>
 (win_size,win_slide));
ff_Farm<task_t,ret_t> farm(std::move(W));
Scheduler<decltype<SchedF> Sched(schedF);
farm.add_emitter(Sched);
farm.remove_collector();

lastStage last(writerOnDisk);

ff_Pipe<> pipe(first, farm, last);
pipe.run_and_wait_end();

Parallel structure:

● … unless … the hast-table is partitioned among all workers and the quotes are
scheduled by stock symbol

Potential load balancing problems !

 30

High-level patterns

● Here we consider

– ParallelFor* data-parallel patterns

● ff_Map, that can be used in pipeline and task-farm

– Macro-Data-flow (MDF) as data-flow pattern (or task-parallel pattern)

● Pipeline and task-farm are high-level patterns as well !

● Other patterns available in FastFlow are:

– PoolEvolution for modelling evolutionary applications

– StencilReduceLoop patterns for iterative stencil-like computation (multi-
core, CUDA/OpenCL-based GPUs)

● We will introduce some basic concept later

 31

High-level patterns: ParallelFor

// sequential code
for(long i=0;i<N; i+=2)
 A[i] = f(i);

● Loops with independent iterations may be
parallelised using the ParalleFor pattern

● The ParallelFor interface is in the parallel_for.hpp
file

● It is implemented on top of the task-farm with a
suitable scheduling strategy

● There are many different methods that can be used

● Iteration scheduling provided:

– Default static scheduling

– Static scheduling with interleaving by using
parallel_for_static

– Dynamic scheduling

● Also provides active scheduling (by using farm's
Emitter) and passive scheduling

// parallel code
ParallelFor pf;
pf.parallel_for(0, N, 2, [&A](const long i) {
 A[i] = f(i);
});

map pattern

 32

High-level patterns: ParallelForReduce

// sequential code: summing all elements
// of an array
double sum=0.0;
for(long i=0;i<N; i++)
 sum += A[i];

● A ParallelFor plus a reduction operation

– associative operation

● The ParallelForReduce interface is in the
parallel_for.hpp file

● It is implemented on top of the task-farm with a
suitable scheduling strategy

● Executes a local reduction in the body part using a
private variable plus a final reduction operation
using a combination function.

● Scheduling strategies are the same as those provided
by the ParallelFor pattern

// parallel code
ParallelForReduce<double> pfr;
pf.parallel_for_reduce(sum, 0.0, 0,N,
 [&A](const long i, double &sum) {
 sum +=A[i];
 },

 [](double &sum, const double v) {
 sum+=v;
 }
);

map-reduce pattern

 33

High-level patterns:
ParallelForPipeReduce

● Useful when the reduction function has to be
executed serially

● Offers the option to compute the Map part in
pipeline with the Reduce part.

● The ParallelForPipeReduce interface is in the
parallel_for.hpp file

● Scheduling strategies are the same as those provided
by the ParallelFor pattern

map-reduce pattern

 34

Simple tests using a ParallelFor

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_parfor.cpp

– arraysum.cpp

 35

High-level patterns: ff_Map

struct mapWorker: ff_Map<> {
 void *svc(void *task) {
 ….
 ff_Map<>::parallel_for(...);
 ff_Map<>::parallel_reduce(....);
 return task;
 }
};

● The ff_Map is just an ff_node that wraps a
ParallelForReduce pattern

● The ff_Map can be used as a pipeline stage and as a
farm worker

● It is better to use the ff_Map than a plain ParallelFor
in a pipeline or farm computations because the run-
time knows that the given stage/worker is parallel

– Better thread mapping strategies and
optimizations can be applied

map pattern inside
stream parallel patterns

 36

Examples: Sobel filter (ffsobel.cpp)

struct sobelStage: ff_Map<Task> {
 sobelStage(int mapwks):
 ff_Map<Task>(mapwrks, true) {};

 Task *svc(Task*task) {
 Mat src = *task->src, dst= *task->dst;
 ff_Map<>::parallel_for(1,src,src.row-1,
 [src,&dst](const long y) {
 for(long x=1;x<src.cols-1;++x) {
 …...
 dst.at<x,y> = sum;
 }
 });
 const std::string outfile=“./out“+task->name;
 imwrite(outfile, dst);
 }

● The first stage reads a number of images
from disk one by one, converts the images
in B&W and produces a stream of images
for the second stage

● The second stage applies the Sobel filter to
each input image and then writes the output
image into a separate disk directory

Let's see the code!

 37

Examples: Mandelbrot set

Data-partitioning may have a big impact on the performance

● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly
leads to load unbalanced computation and

poor performance

– Let's consider the minimum computation unit a single image line (image
size 2048x2048, max 103 iterations per point)

● ParallelFor Static partitioning of lines (48 workers) MaxSpedup 14
● ParallelFor Dynamic partitioning of lines (48 workers) MaxSpeedup 37

 38

Examples: Mandelbrot set (2)

● Suppose now we want to compute a number of Mandelbrot images (for
example varying the computing threshold per point)

● We have basically two options:

1. One single parallel-for inside a sequential for iterating over all different threshold
points

2. A task-farm with map workers implementing
two different scheduling strategies

● Which one is better having limited resources ?

– Depends on many factors, too difficult to say in advance

for_each threshold values
 parallel_for (Mandel(threshold));

Moving quickly between the two solutions
is the key point

......

 39

Proposed exercises using ParallelFor &
ParallelForReduce

● Finding the minimum and the index of the minimum value in an array of integer
values of size N.

Given the following array:

we want as output the pair <8, 2>

– The sequential implementation is given in arrayminindex.cpp

– The objective is to implement the computation in parallel using the ParallelFor*
patterns.

0 1 2 3 4 5 6 7 8 9

31 52 11 13 3 12 23 64 2 12

 40

High-level patterns: ff_mdf
● The ff_mdf pattern targets macro-data-flow computations

● Is a general approach to parallelism based only on data
dependencies.

● The computation is expressed by the data-flow graph, i.e.
DAG whose nodes are macro-instructions and arcs are pure
data-dependencies

– A macro-instruction can be a set of simple instractions
or a complex kernel function.

● By using the ff_mdf pattern, the user has to specify data-
dependencies, i.e. declaring which are INPUT and
OUTPUT data

● The AddTask method of the ff_mdf class is used to
generate tasks

● The run-time, automatically, takes care of dependencies
and then schedules ready tasks to Workers which executes
ready (fireable) instructions in parallel

void taskGen(ff_mdf*const mdf) {
 ….
 const param_info _1= {&A, INPUT};
 const param_info _2 = {&B, INPUT};
 const param_info _3 = {&C, OUTPUT};
 std::vector<param_info> Param = {_1,_2,_3};

 mdf->AddTask(Param, GEMM, A,B,C);
 ….
}

ff_mdf mdf(taskGen, ...);
mdf.run_and_wait_end();

data-dependency pattern

 41

A simple test using ff_mdf

Parameters<ff_mdf> P;// structure containing all parameters needed to taskGen function
ff_mdf dag(taskGen, &P); // creates the mdf object
P.A=A,P.B=B,P.C=C....P.mdf=&dag... // preparing all parameters
dag.run_and_wait_end(); // run and wait termination

// macro operations
void sum2(long *X, long *Y, long size);
void sum3(long *X, long *Y, long *Z, long size);
….
// task generator function
void taskGen(Parameters<ff_mdf> *P) {
 … auto mdf = P->mdf;

 {// A= A+B
 const param_info _1= {&A, INPUT};
 const param_info _2 = {&B, INPUT};
 const param_info _3 = {&A, OUTPUT};
 std::vector<param_info> Param = {_1,_2,_3};
 mdf->AddTask(Param, sum2, A, B, SIZE);
 }{// B= B+C
 const param_info _1= {&B, INPUT};
 const param_info _2 = {&C, INPUT};
 const param_info _3 = {&B, OUTPUT};
 std::vector<param_info> Param = {_1,_2,_3};
 mdf->AddTask(Param, sum2, B, C, SIZE);
 …...

A,B,C,D are arrays of size N

macro instructions

 42

● Matrix multiplication using Strassen's algorithm:

– We want to compute AxB = C, A is MxP, B is PxN and C is MxN

– Partitioning the matrices in 4 equal-size blocks we have:

S1 = A11 + A22 S2 = B11 + B22 P1 = S1 * S2
S3 = A21 + A22 P2 = S3 * B11
S4 = B12 – B22 P3 = A11 * S4
S5 = B21 – B11 P4 = A22 * S5
S6 = A11 + A12 P5 = S6 * B22
S7 = A21 – A11 S8 = B11 + B12 P6 = S7 * S8
S9 = A12 – A22 S10 = B21 + B22 P7 = S9*S10
C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 - P2 + P3 + P6

● Let's take a look at the code examples/strassen/strassen_mdf.cpp in the fastflow folder.

Strassen algorithm example using
ff_mdf

A11 A12

A21 A22

B11 B12

B21 B22
X

C11 C12

C21 C22
=

 43

Block Cholesky and LU factorizations

DAG represents, 5 tiles, left-looking
version of Cholesky algorithm

D. Buono, M. Danelutto, T. De Matteis, G. Mencagli and M.
Torquati “A light-weight run-time support for fast dense linear
algebra on multi-core” in PDCN 2014 conference, 2014

● Much more complex data-flow graphs

● The DAG is huge for big matrices

– cannot be entirely stored in memory

– Have to be generated dynamically

● The ff_mdf pattern allows to generate

the graph dynamically and overlap

the graph generation phase with the

computation

 44

Targeting GPUs, basic concepts
(not yet covered in the FastFlow tutorial)

 45

The Loop-Of-Stencil-Reduce pattern

● We introduced the Loop-Of-Stencil-Reduce pattern

– Specifically targeting iterative Map+Reduce algorithm

– Both 1D and 2D computation on multiple GPUs

– On top of this pattern we implemented: map, reduce and map+reduce

– OpenCL and CUDA version

 46

Stencil computation
1D 2D

- g : list of T → list of T is the elemental function
- Si = [a’i-k , … , a’i , … , a’i+k] is the i-th neighborhood
- we consider the case where k is a constant value
- a’ is the extension of a with suitable extra items to deal with the border
neighborhood computation

 47

ff_stencilReduceLoop* run-time
behaviour

// d2h input data, allocate double-buffering

(in_d_ptr, out_d_ptr, env_d_ptr) = allocatewrite(input, env)

while cond

 // swap buffers, swap halo among different devices

 swap_buffers_and_halo (in_d_ptr, out_d_ptr)

 out_d_ptr = stencil <f_kernel> (in_d_ptr, env_d_ptr) // DEV

 part_d_ptr = reduce <op_kernel> (out_d_ptr) // DEV

 partial_data = read(part_d_ptr)

 cond = reduce op partial_data // host final reduction

// h2d−copy output, release buffers

output = releaseread (in_d_ptr, out_d_ptr, env_d_ptr)

 48

ff_stencilReduceLoop*

stencilReduceLoopOCL

GPU1 GPU2

Tin Tout

Tocl

... ...

– Using OpenCL (for CUDA we have the same concepts)

– Implemented as a “special” kind of FastFlow node

– Each GPU is managed by a different internal “accelerator”

– Tocl is a template type encapsulating both input and output GPU types

● It is used as an interface type via the setTask/releaseTask methods.

– Using the ff_stencilReduceLoopOCL we implemented:

– ff_mapOCL, ff_reduceOCL, ff_mapReduceOCL

– Can be used as a pipeline stage or as a worker in a task-farm

 49

Targeting GPUs in a pipeline

● Pipeline computation example:

– Tin/Tout is myTask

– Tocl is oclTask (must subclass from baseOCLTask)

● We want to compute a Map only on the vector B

– B is non contiguous in memory // OpenCL interface type for the kernel2 node (Tocl)
struct oclTask: baseOCLTask<myTask, float, float> {
 // called by the run-time for each input task
 void setTask(const Task *task) {
 const size_t size = computeSize(B);
 buffer = new float[size];
 copyBuffer(B, buffer, size);
 //set input and output host pointers
 setInPtr(buffer, size); setOutPtr(buffer);
 }
 // called by the run-time at the end of task execution
 void releaseTask(Task *task) {

copyBack(task->B, buffer); // copy results back to B
delete [] buffer;

 }
 float *buffer;
};

// this is the stream type (Tin/Tout)
struct myTask {

 std::vector<float> A;
 std::vector<std::vector<float> > B;
 ….
 std::string command;
 ….

};

kernel 1 kernel 2 kernel 3

GPU

myTask myTask

float []

 50

Examples: Sobel filter

● Let's take a quick look at the ff_pipe+mapOCL.cpp example in the fastflow/tests/ocl
folder.

 51

Targeting distributed systems, basic
concepts

(not yet covered in the FastFlow tutorial)

 52

Targeting distributed systems
(concepts)

● Building blocks:

– ff_dnode extend the ff_node class

– Communication patterns:

● Unicast: one-to-one unidirectional channel
● Broadcast: one-to-many, the same data is sent to all connected peers
● Scatter: one-to-many, data is split in disjoint partitions, each one sent to a

distinct connected peer
● On-demand: one-to-one, the data is sent to one of the connected peear using a

request-reply protocol
● Gather-All: many-to-one, receives a data partition from all connected peers,

and eventually the message is recomposed
● Collectc-from-Any: one-to-one, receives data from one of the connected peers
● TODO: Multicast, ….

–

 53

ff_dnode

● A ff_dnode is an ff_node with an extra channel used to communicate with
another dnode by using a communication pattern (external channel)

● The external channel may be specialized for input, output or both

● The idea is that only edge nodes are dnodes

● Communication patterns:

– TCP/IP networks by using the ZeroMQ library

– Infiniband networks by using Linux verbs (experimental)

 54

How it works

● The user has to:

– Define and connect the application parts using proper communication
patterns

– Prepare the data to send

– Provide the run-time with message buffers where data has to be
received

 55

How to define a dnode

 56

Distributed image filtering
(img_d.cpp)
● Let's take a quick look at the img_d.cpp example which is a possible distributed

version of the in the img.cpp app.

– This version uses only 2 machines

– It is just a proof-of-concept implementation

 57

That's (almost) all !
Thanks for participating!

For any questions or comments please send an e-mail
to torquati@di.unipi.it

http://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

FastFlow project site: EU-FP7 projects using FastFlow:

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57

