Parallel Programming Using FastFlow

(Version September 2015)

Massimo Torquati
Computer Science Department, University of Pisa
torquati@di.unipi.it

Summary

1 Introduction

1.1 Installation and program compilation
1.1.1 Testsand examples

2 Design principles

4.3.2 Dot product

3 Stream parallelism
3.1 Stream parallel skeletonso
3.2 FastFlow abstractions
321 ffmode.
3.2.2 ffPipe
3.2.3 ffrminode and ffrmonode
3.2.4 fffarm and ff-Farm 0oL
3.3 Tasks scheduling
3.4 Tasksordering
3.5 Feedback channels
3.6 Mixing farms pipelines and feedbacks
3.7 Software accelerators
3.8 Examples
3.8.1 Images filtering oL
4 Data parallelism
4.1 Data parallel skeletons 0L
4.2 FastFlow abstractions
4.2.1 ParallelFor
4.2.2 ParallelForReduce
4.2.3 ParallelForPipeReduce
4.24 ffMap
4.3 Examples
4.3.1 Matrix multiplication

4.3.3 Mandelbrot fractal

4.3.4 Sobel filter

5 Data-flow parallelism

23]

2]

5.1 The ffrmdf data-flow skeleton
5.2 Examples

5.2.1 Block-based matrix multiplication
5.2.2 Block-based Cholesky factorisation

Task parallelism
Targeting GPUs

Targeting Distributed Systems

Chapter 1

Introduction

FastFlow is an open-source, structured parallel programming framework orig-
inally conceived to support highly efficient stream parallel computation while
targeting shared memory multi-core. Its efficiency comes mainly from the op-
timised implementation of the base communication mechanisms and from its
layered design. FastFlow provides the parallel applications programmer with a
set of ready-to-use, parametric algorithmic skeletons modelling the most com-
mon parallelism exploitation patterns. The algorithmic skeletons provided by
FastFlow may be freely nested to model more and more complex parallelism
exploitation patterns.

FastFlow is an algorithmic skeleton programming framework developed and
maintained by the parallel computing group at the Departments of Computer
Science of the Universities of Pisa and Torino [9].

Fig. presents a brief history of the algorithmic skeleton programming
model. For a more in-depth description, please refer to [14].

A number of papers and technical reports discuss the different features of
this programming environment [I0} Bl 2], the results achieved when parallelizing
different applications [I8, [T, 15} 8} [Tl [7, [6] and the use of FastFlow as software
accelerator, i.e. as a mechanism suitable for exploiting unused cores of a multi-
core architecture to speed up execution of sequential code [3, 4]. This work
represents instead a tutorial aimed at describing the use of the main FastFlow
skeletons and patterns and its programming techniques, providing a number of
simple (and not so simple) usage examples.

This tutorial describes the basic FastFlow concepts and the main skele-
tons targeting stream-parallelism, data-parallelism and data-flow par-
allelism. It is still not fully complete: for example important arguments and
FastFlow features such as the FastFlow memory allocator, the thread to core
affinity mapping, GPGPU programming and distributed systems programming
are not yet covered in this tutorial.

Algorithmic skeletons were introduced by M. Cole in late 1988 [12]. According to this
original work

The new system presents the user with a selection of independent “algo-
rithmic skeletons”, each of which describes the structure of a particular
style of algorithm, in the way in which higher order functions represent
general computational frameworks in the context of functional program-
ming languages. The user must describe a solution to a problem as an
instance of the appropriate skeleton.

Later, in his algorithmic skeleton " manifesto” [I3] this definition evolved as follows:

many parallel algorithms can be characterized and classified by their ad-
herence to one or more of a number of generic patterns of computation
and interaction. For example, many diverse applications share the underly-
ing control and data flow of the pipeline paradigm. Skeletal programming
proposes that such patterns be abstracted and provided as a program-
mer’s toolkit, with specifications which transcend architectural variations
but implementations which recognize these to enhance performance.

Different research groups started working on the algorithmic skeleton concept and pro-
duced different programming frameworks providing the application programmer with
algorithmic skeletons. The definition of algorithmic skeletons evolved and eventually a
widely shared definition emerged stating that:

An algorithmic skeleton is a parametric, reusable and portable program-
ming abstraction modeling a known, common and efficient parallelism ex-
ploitation pattern.

Currently various frameworks exist that provide the application programmer with algo-
rithmic skeletons. Usually, the frameworks provide stream parallel skeletons (pipeline,
task farm), data parallel (map, reduce, scan, stencil, divide&conquer) and control par-
allel (loop, if-then-else) skeletons mostly as libraries to be linked with the applica-
tion business code. Several programming frameworks are actively maintained, includ-
ing Muesli http://www.wil.uni-muenster.de/pi/forschung/Skeletons/1.
79/index.html, Sketo http://sketo.ipl-lab.org/, OSL http://traclifo.
univ-orleans.fr/0SL/, SKEPU http://www.ida.liu.se/~-chrke/skepu/,
FastFlow http://mc-fastflow.sourceforge.net/fastflow, Skandiumhttps:
//github.com/mleyton/Skandium. A recent survey of algorithmic skeleton frame-
works may be found in [17].

Figure 1.1: Algorithmic skeletons [14]

http://www.wi1.uni-muenster.de/pi/forschung/Skeletons/1.79/index.html
http://www.wi1.uni-muenster.de/pi/forschung/Skeletons/1.79/index.html
http://sketo.ipl-lab.org/
http://traclifo.univ-orleans.fr/OSL/
http://traclifo.univ-orleans.fr/OSL/
http://www.ida.liu.se/~chrke/skepu/
http://mc-fastflow.sourceforge.net/fastflow
https://github.com/mleyton/Skandium
https://github.com/mleyton/Skandium

Parallel patterns vs parallel skeletons:

Algorithmic skeletons and parallel design patterns have been developed in completely dis-
joint research frameworks but with almost the same objective: providing the programmer
of parallel applications with an effective programming environment. The two approaches
have many similarities addressed at different levels of abstraction. Algorithmic skeletons
are aimed at directly providing pre-defned, efficient building blocks for parallel compu-
tations to the application programmer, whereas parallel design patterns are aimed at
providing directions, suggestions, examples and concrete ways to program those building
blocks in different contexts.

We want to emphasise the similarities of these two concepts and so, throughout this tu-
torial, we use the terms pattern and skeleton interchangeably. For an in-depth discussion
on the similarities and the main differences of the two approaches please refer to [14].

This tutorial is organised as follow: Sec. describes how to download the
framework and compile programs, Sec. [2f recalls the FastFlow application design
principles. Then, in Sec. [3| we introduce the main features of the stream-based
parallel programming in FastFlow: how to wrap sequential code for handling a
steam of data, how to generate streams and how to combine pipelines, farms
and loop skeletons, how to set up farms and pipelines as software accelerator.
In Sec. [we introduce data-parallel computations in FastFlow. ParallelFor, Par-
allelForReduce, ParallelForPipeReduce and Map are presented in this section.
Finally, in Sec. [5| the macro data-flow programming model provided by the
FastFlow framework is presented.

1.1 Installation and program compilation

FastFlow is provided as a set of header files. Therefore the installation pro-
cess is trivial, as it only requires to download the last version of the FastFlow
source code from the SourceForge (http://sourceforge.net/projects/
mc-fastflow/|) by using svn:

svn co https://svn.code.sf.net/p/mc-fastflow/code fastflow

Once the code has been downloaded (with the above svn command, a fastflow
folder will be created in the current directory), the directory containing the ff
sub-directory with the FastFlow header files should be named in the —I flag of
g++, such that the header files may be correctly found.

For convenience may be useful to set the environment variable FF_ROOT
to point to the FastFlow source directory. For example, if the FastFlow tarball
(or the svn checkout) is extracted into your home directory with the name
fastflow, you may set FF_ROOT as follows (bash syntax):

export FF_ROOT=S$HOME/fastflow

Take into account that, since FastFlow is provided as a set of .hpp source
files, the —03 switch is essential to obtain good performance. Compiling with no
—-03 compiler flag will lead to poor performance because the run-time code will
not be optimised by the compiler. Also, remember that the correct compilation
of FastFlow programs requires linking the pthread library (-pthread flag).

http://sourceforge.net/projects/mc-fastflow/
http://sourceforge.net/projects/mc-fastflow/

00~ O Ut WK -

g++ —-std=c++11 —-ISFF_ROOT -03 test.cpp —-o test —-pthread

1.1.1 Tests and examples

In this tutorial a set of simple usage examples and small applications are de-
scribed. In almost all cases, the code can be directly copy-pasted into a text
editor and then compiled as described above. For convenience all codes are
provided in a separate tarball file fftutorial_source_code.tgz with a
Makefile.

At the beginning of all tests and examples presented, there is included the
file name containing the code ready to be compiled and executed, for example:

/* >k 3k sk >k sk 3k ok >k sk ok >k sk sk ok sk sk >k sk sk sk >k sk ok >k sk %k ok ko */
/#* skxkkxkk hello_node.cpp sxskx x/

#include <iostream>
#include <ff/node.hpp>
using namespace ff;
struct myNode: ff_node {

means that the above code is in the file hello_node. cpp.

Chapter 2
Design principles

FastFlow has been originally designed to provide programmers with efficient par-
allelism exploitation patterns suitable to implement (fine grain) stream parallel
applications. In particular, FastFlow has been designed

e to promote high-level parallel programming, and in particular skeletal
programming (i.e. pattern-based explicit parallel programming), and

e to promote efficient programming of applications for multi-core.

More recently, within the activities of the EU FP7 STREP project ”Para-
Phrase”E] the FastFlow framework has been extended in several ways. In partic-
ular, in the framework have been added:

e several new high-level patterns

facilities to support coordinated execution of FastFlow program on dis-
tributed multi-core machines

support for execution of new data parallel patterns on GPGPUs

e new low-level parallel building blocks allowing to build almost any kind of
streaming graph and parallel patterns.

The whole programming framework has been incrementally developed ac-
cording to a layered design on top of Pthread/C++ standard programming
framework as sketched in Fig. .

The Building blocks layer provides the basics blocks to build (and generate
via C++ header-only templates) the run-time support of core patterns. Typi-
cal objects at this level are queues (e.g. lock-free SPSC queues, bounded and
unbounded), process and thread containers (as C++ classes) mediator thread-
s/processes (extensible and configurable schedulers and gatherers). The shared-
memory run-time support extensively uses non-blocking lock-free algorithms,

Thttp://paraphrase-ict.eu

Parallel applications
efficient and portabig

High-level patterns
parallel_for, parallel_forReduce, ...

= Core patterns
i pipeline, farm, feedback
w
(1]
— Building blocks

queues, ff node, ...

TCPIP
CUDA OpenCL \B/OFED

-

" Multicore and many-core pl

Clusters of mufticore + many-core -~

T e TR e TR e R e R e e e e e R e e

Figure 2.1: Layered FastFlow design

the distributed run-time support employs zero-copy messaging, the GPGPUs
support exploits asynchrony and SIMT optimised algorithms.

The Core patterns layer provides a general data-centric parallel program-
ming model with its run-time support, which is designed to be minimal and
reduce to the minimum typical sources of overheads in parallel programming.
At this level there are two patterns (task-farm and all its variants and pipeline)
and one pattern-modifier (feedback). They make it possible to build very gen-
eral (deadlock-free) cyclic process networks. They are not graphs of tasks, they
are graphs of parallel executors (processes/threads). Tasks or data items flows
across them according to the data-flow model. Overall, the programming model
can be envisioned as a shared-memory streaming model, i.e. a shared-memory
model equipped with message-passing synchronisations. They are implemented
on top of building blocks.

The High-level patterns are clearly characterised in a specific usage con-
text and are targeted to the parallelisation of sequential (legacy) code. Examples
are exploitation of loop parallelism (ParallelFor and its variants), stream par-
allelism (pipeline and task-farm), data-parallel algorithms (map, poolEvolution,
stencil, StencilReduce), execution of general workflows of tasks (mdf - Macro
Data-Flow), etc. They are typically equipped with self-optimisation capabili-
ties (e.g. load-balancing, grain auto-tuning, parallelism-degree auto-tuning) and
exhibit limited nesting capability. Some of them targets specific devices (e.g.
GPGPUs). They are implemented on top of core patterns.

Parallel application programmers are supposed to use FastFlow directly ex-
ploiting the parallel patterns available at the ”High-level” or ”Core” levels. In
particular:

e defining sequential concurrent activities, by sub classing a proper FastFlow
class, the £f_node (or £f_minode and £f_monode) class, and

e building complex stream parallel patterns by hierarchically composing se-
quential concurrent activities, pipeline patterns, feedbacks, task-farm pat-
terns and their ”specialised” versions implementing more complex parallel
patterns.

Concerning the usage of FastFlow to support parallel application develop-
ment on shared memory multi-core, the framework provides two possible ab-
stractions of structured parallel computation:

e a skeleton program abstraction used to implement applications completely
modelled according to the algorithmic skeleton concepts. When using this
abstraction, the programmer writes a parallel application by providing the
business logic code, wrapped into proper £f_node sub-classes, a skeleton
(composition) modelling the parallelism exploitation pattern of the ap-
plication and a single command starting the skeleton computation and
awaiting for its termination.

e an accelerator abstraction used to parallelize (and therefore to accelerate)
only some parts of an existing application. In this case, the program-
mer provides a skeleton composition which is run on the ”spare” cores of
the architecture and implements a parallel version of part of the business
logic of the application, e.g. the one computing a given f(z). The skeleton
composition, if operating on stream (i.e. pipeline or task-farm based com-
positions), will have its own input and output channels. When an f(x;)
has to be computed within the application, rather than writing code to
call to the sequential f code, the programmer may insert asynchronous
"offloading” calls for sending x; to the accelerator skeleton. Later on,
when the result of f(z;) has to be used, the code needed for "reading”
accelerator results may be used to retrieve the computed values.

This second abstraction fully implements the ”minimal disruption” principle
stated by Cole in his skeleton manifesto [I3], as the programmer using the
accelerator is only required to program a couple of offload/get_result
primitives in place of the single ... = f(z) function call statement (see Sec. [3.7).

Chapter 3

Stream parallelism

An application may operate on values organised as streams. A stream is a
possibly infinite sequence of values, all of them having the same data type, e.g.
a stream of images (not necessarily all having the same format), a stream of
files, a stream of network packets, a stream of bits, etc.

A complex streaming application may be seen as a graph (or workflow) of
computing modules (sequential or parallels) whose arcs connecting them bring
streams of data of different types. The typical requirements of such a complex
streaming application is to guarantee a given Quality of Service imposed by the
application context. In a nutshell, that means that the modules of the workflow
describing the application have to be able to sustain a given throughput.

There are many applications in which the input streams are primitive, be-
cause they are generated by external sources (e.g. HW sensors, networks, etc..)
or I/O. However, there are cases in which streams are not primitive, but it is
possible that they can be generated directly within the program. For example,
sequential loops or iterators. In the following we will see how to generate a
stream of data in FastFlow starting from sequential loops.

3.1 Stream parallel skeletons

Stream parallel skeletons are those natively operating on streams, notably pipeline
and task-farm (or simply farm).

pipeline

The pipeline skeleton is typically used to model computations expressed in
stages. In the general case, a pipeline may have more than two stages, and
it can be built as a single pipeline with N stages or as pipeline of pipelines.
Given a stream of input tasks

R i |

10

the pipeline with stages
S1y---5,5p

computes the output stream

Sp(eoos2(s1(Tm)) o)y vy Sp(e - s2(s1(z1)) .. .)

The parallel semantics of the pipeline skeleton ensures that all the stages
will be execute in parallel. It is possible to demonstrate that the total time
required to entirely compute a single task (latency) is close to the sum of the
times required to compute the different stages. And, the time needed to output
a new result (throughput) is close to time spent to compute a single task by the
slowest stage in the pipeline.

task-farm

The task-farm (sometimes also called master-worker) is a stream parallel paradigm
based on the replication of a purely functional computation. The farm skeleton
is used to model embarrassingly parallel computations. The only functional
parameter of a farm is the function f needed to compute the single task. The
function f is stateless. Only under particular conditions, functions with internal
state, may be used.

Given a stream of input tasks

Tms -5 L1

the farm with function f computes the output stream

f(@m), ..o fern)

Its parallel semantics ensures that it will process tasks such that the single
task latency is close to the time needed to compute the function f sequentially,
while the throughput (only under certain conditions) is close to % where n is
the number of parallel agents used to execute the farm (called workers), i.e. its
parallelism degree.

The concurrent scheme of a farm is composed of three distinct parts: the
Emitter, the pool of workers and the Collector. The Emitter gets a farm’s
input tasks and distributes them to workers using a given scheduling strategy.
The Collector collects tasks from workers and sends them to the farm’s output
stream.

3.2 FastFlow abstractions

In this section we describe the sequential concurrent activities (ff_node, £f_minode,
ff_monode and £f_dnode), and the ”core” skeletons pipeline and task-farm

(see Fig used as building blocks to model composition and parallel exe-
cutions. The core skeletons are ff_node derived objects as well, so they can

be nested and composed in almost any arbitrary way. The feedback pattern
modifier can also be used in the pipeline and task-farm to build complex cyclic
streaming networks.

11

B~ W N =

U W N =

-0~ =0

ff_node ff_monode

Q
o composition %—»

oo o ff_min ode

shmem channel

functional replication &
MISD computation feedback

Figure 3.1: FastFlow basic abstractions: channel (implemented as a SPSC
bounded or unbounded lock-free queue), single-input single-output node
(ff-node), single-input multi-output (ff-monode) node, multi-input single-output
node (ff-minode), composition (pipeline) and functional replication and MISD
computation task-farm, loopback channel (feedback).

3.2.1 ff node

The ff_node sequential concurrent activity abstraction provides a means to
define a sequential activity (via its svc method) that a) processes data items
appearing on a single input channel and b) delivers the related results onto
a single output channel.

In a multi-core, a £f_node object is implemented as a non-blocking
thread (or a set of non-blocking threads). This means that the number of
f£f_node(s) concurrently running should not exceed the number of logical cores
of the platform at hand. The latest version of FastFlow supports also blocking
run-time. It is possible to select the blocking run-time by compiling the code
with the flag —-DBLOCKING_MODE.

The £f_node class actually defines a number of methods, the following
three virtual methods are of particular importance:

public:
virtual voidx svc(void xtask) = 0; // encapsulates user’s business code
virtual int svce_init () { return 0; }; // initialization code

virtual void svc_end() {} // finalization code
The first is the one defining the behaviour of the node while processing the
input stream data items. The other two methods are automatically invoked
once and for all by the FastFlow RTS when the concurrent activity represented
by the node is started (svc_init) and right before it is terminated (svc_end).
These virtual methods may be overwritten in the user supplied ££f_node sub-
classes to implement initialisation code and finalisation code, respectively. Since
the svc method is a pure virtual function, it must be overwritten.
A FastFlow £f_node can be defined as follow:

#include <ff/node.hpp>
using namespace ff;
struct myStage: ff_node {
int svc_init () { // not mandatory
// initialize the stage

12

return 0; // returing non zero means error!
void *svc(void xtask) {
// business code here working on the input ’task’
return task; // may return a task or EOS,GO.ON,GO.OUT,EOSNOFREEZE
}
void svc_end () { // not mandatory
// finalize the stage, free resources ,...
}s

The £f_node behaves as a loop that gets an input task (coming from the
input channel), i.e. the input parameter of the svc method, and produces one
or more outputs, i.e. the return value of the svc method or the invocation of
the £f_send_out method that can be called inside the svc method. The loop
terminates either if the output provided or the input received is a special value:
7End-Of-Stream” (EOS). The EOS is propagated across channels to the next
ff_node.

Particular cases of £f_nodes may be simply implemented with no input
channel or no output channel. The former is used to install a concurrent activity
generating an output stream (e.g. from data items read from keyboard or from a
disk file); the latter to install a concurrent activity consuming an input stream
(e.g. to present results on a video, to store them on disk or to send output

packets into the network).
The simplified life cycle of an £f_node is informally described in the fol-
lowing pseudo-code:

do {
if (svc_init () < 0) break;
do {
intask = input_stream.get ();
if (task == EOS) output_stream.put (EOS);
else {
outtask = svc(intask);
output_stream.put (EOS) ;
}
} while (outtask != EOS);
svc_end () ;
termination = true;
if (thread_has_to_be_frozen() == "yes") {
freeze_the_thread_and_wait_for_thawing();
termination = false;

}}while(!termination);

It is also possible to return from a £f_node the value GO_-ON. This special
value tells the run-time system (RTS) that there are no more tasks to send to the
next stage and that the ££_node is ready to receive the next input task (if any).
The GO_ON task is not propagated to the next stage. Other special values can
be returned by an £f_node, such as GO_OUT and EOS_NOFREEZE, both of
which are not propagated to the next stages and are used to exit the main node
loop. The difference is that while GO-OUT allows the thread to be put to sleep
(if it has been started with run_then_freeze), the second one instead allows
to jump directly to the point where input channels are checked for receiving
new tasks without having the possibility to stop the thread.

13

An £f_node cannot be started alone (unless the method run () and wait ()

are overwritten). Instead, it is assumed that £f_node objects are used as
pipeline stages or task-farm workers. In order to show how to execute and wait
for termination of £f_node objects, we provide here a simple wrapper class (in
the next sections we will see that pipeline and task-farm are £f_node derived
objects) :

1 /=
2 /x

3

3k ok ok oK ok oK o oK K oK oK Sk ok K K K KK R K KK Rk ok ok /
sskx*kx hello_node.cpp s*kx*x %/

4 #include <iostream>
5 #include <ff/node.hpp>
6 using namespace ff;
7 struct myNode: ff_node {

55 }

// called once at the beginning of node’s life cycle
int svec_init () {
std::cout << ”Hello, I'm (re—)starting...\n”;
counter = 0;
return 0; // 0 means success

// called for each input task of the stream, or until
// the EOS is returned if the node has no input stream
void *svc(void xtask) {

if (++counter > 5) return EOS;

std ::cout << "Hi! (” << counter << ”7)\n”;

return GOON; // keep calling me again

// called once at the end of node’s life cycle
void svc_end () { std::cout << ”Goodbye!\n”; }

// starts the node and waits for its termination
int run_and_wait_end (bool=false) {

if (ffnode::run() < 0) return —1;

return ff_node:: wait();

// first sets the freeze flag then starts the node
int run_then_freeze () { return ff_node::freeze_and_-run(); }
// waits for node pause (i.e. until the node is put to sleep)

int wait_freezing () { return ff_node:: wait_freezing();}
// waits for node termination
int wait () { return ff_node::wait();}

long counter;

}s
39 int main() {

myNode mynode;
if (mynode.run-and_-wait_-end () <0)
error ("running myNode”) ;
std::cout << 7 first run done\n\n”;
long i=0;
do {
if (mynode.run_then_freeze ()<0)
error ("running myNode”) ;
if (mynode.wait_freezing())
error (”waiting myNode”) ;
std ::cout << ”"run ” << i << ” done\n\n”;
} while(++i<3);
if (mynode.wait())
error ("waiting myNode”) ;
return 0;

In this example, myNode has been defined by redefining all methods needed to
execute the node, put the node to sleep (freeze the node), wake-up the node

14

DU W

,,

e ODD 4@

pipeline pipeline + feedback

Figure 3.2: Possible pipeline and pipeline+ feedback FastFlow skeleton versions.

(thaw the node) and waiting for its termination.
Line 41 starts the computation of the node and waits for its termination syn-

chronously. At line 46 the node is started again but in this case the run_then_freeze

method first sets the ££f_node: : freezing flag and then starts the node (i.e.
creates the thread which execute the node). The £f_node::freezing flag
tells the run-time that the node has to be put to sleep (frozen using our ter-
minology) instead of terminating it when an EOS is received in input or it is
returned by the node itself. The node runs asynchronously with respect to the
main thread, so in order to synchronise the executions, the wait_freezing
method is used (it waits until the node is frozen by the FastFlow run-time).
When the run_then_freeze method is called again, since the node is frozen,
instead of starting another thread, the run-time just ”thaws” the thread.

Typed ff-node, the ff-node_t:

Sometimes it could be useful to use the typed version of the ff_node abstrac-
tion, i.e. £f_node_t<Tin, Tout>. This class just provides a typed interface
for the svc method:

template<typename IN_t, typename OUT_t=IN_t>
class ff_node_t: public ff_node {

public:

virtual OUT.t xsvc(IN_t stask) = 0;

b

For the tests and examples used in this tutorial we use both the £f_node and
the £f_node_t classes for defining node abstractions.

3.2.2 ff Pipe

Pipeline skeletons in FastFlow can be easily instantiated using the C++11-based
constructors available in the latest release of FastFlow.

The standard way to create a pipeline of n different stages in FastFlow is to
create n distinct £f_node objects and then pass them in the correct order to
the ff_Pipe constructorﬂ For example, the following code creates a 3-stage
pipeline:

IThe class ff-Pipe is a wrapper of the class ff-pipeline

15

© OO Uk WN -

/* 3k 3k 5k >k >k 3k ok >k sk 5k >k sk 5k ok >k sk >k >k 3k 5k >k sk 5k %k sk %k ok k. */
/#* skxkkx%x%x hello_pipe.cpp sxskx x/

#include <ff/pipeline.hpp> // defines ff_pipeline and ff_pipe

using namespace ff;
typedef long myTask; // this is my input/output type
struct firstStage: ff_node_t<myTask> { // 1st stage
myTask xsvc(myTaskx*) {
// sending 10 tasks to the next stage
for (long 1=0;i<10;++1)
ff_send_-out (new myTask(i));
return EOS; // End—Of—Stream

}
I
struct secondStage: ff_node { // 2nd stage
void *svc(void xt) {
return t; // pass the task to the next stage

}

b

struct thirdStage: ff_node_t<myTask> { // 3rd stage
myTask *svc(myTask xtask) {

std :: cout << ”Hello I'm stage 3, I’ve received 7 << *xtask << 7\n”;

return GO.ON;
}

;
int main() {

firstStage _1;

secondStage _2;

thirdStage _3;

ff_Pipe<> pipe(-1,-2,.3);

if (pipe.run_and_-wait_end()<0) error(”running pipe”);

return 0;

}

To execute the pipeline it is possible to use the run_and_wait_end () method.
This method starts the pipeline and synchronously waits for its termination ﬂ

The ff_Pipe constructor also accepts as pipeline stage ff_node_F ob-
jects. The ff_node_F class allows to create an ff_node from a function
having the following signature Tout * (xF) (Tin*, ff_nodexconst). This is
because in many situations it is simpler to write a function than an £f_node.
The FastFlow run-time calls the function passing as first parameter the input
task and as second parameter the pointer to the low-level £f_node object.

As an example consider the following 3-stage pipeline :

/* >k 3k sk >k >k sk ok >k sk 5k >k sk sk ok sk sk >k sk sk sk >k sk ok >k sk ok ok ko */
/* skxkkkxk hello_pipe2.cpp x#kxx */

#include <iostream>
#include <ff/pipeline.hpp> // defines ff_pipeline and ff_Pipe
using namespace ff;

© 00N Uk WN -

typedef long myTask; // this is my input/output type

myTask* F1(myTask *t,ff_nodexconst node) { // 1lst stage

static long count = 10;
std :: cout << ”Hello I’'m stage F1, sending 1\n”;
return (——count > 0) ? new long(1l) : (myTasksx*)EOS;

}
struct F2: ff_node_t <myTask> { // 2nd stage

myTask *svc(myTask xtask) {

std :: cout << ”Hello I'm stage F2, I’ve received ” << xtask << ”"\n”;

return task;

}
} F2;
myTask* F3(myTask xtask,ff_-nodexconst node) { // 3rd

21t is also possible to run the pipeline asynchronously

16

stage

© 00U WN -

Q0O UE WN -

std :: cout << ”Hello I'm stage F3, I’ve received ” << xtask << ”\n”;
return task;

}

int main() {

// F1 and F3 are 2 functions, F2 is an ff_node
ff_node_F <myTask> first (F1);
ff_node_F <myTask> last (F3);

ff_Pipe<> pipe(first , F2, last);

if (pipe.run_and_wait_end ()<0) error (”running pipe”);

return 0;
}
In the above F1 and F2 are used as first and third stage of the pipeline whereas
an ff_node_t<myTask> object is used for the middle stage. Note that the
first stage, generates 10 tasks and then an EOS.

Finally, it is also possible to add stages (of type £f_node) to a pipeline

using the add_stage method as in the following sketch of code:

int main() {
ff_Pipe<> pipe(first ,F2,last);
Staged staged; // Staged4 is an ff_node derived class
pipe.add_stage (staged);
// Stageb is an ff_node derived class
pipe.add_stage (make_unique<Stageb>());
if (pipe.run_and_wait_end ()<0) error(”running pipe”);
return 0;
}

3.2.3 ff-minode and ff monode

The ff-minode and the ff-monode are multi-input and multi-output FastFlow
nodes, respectively. By using these kinds of node, it is possible to build more
complex skeleton structures. For example, the following code implements a 4-
stage pipeline where each stage sends some of the tasks received in input back
to the first stage. As for the ff_node_t<Tin, Tout>, the framework also pro-
vides the £f_minode_t<Tin, Tout> and £f_monode_t<Tin, Tout> classes
in which the svc method accepts pointers of type Tin and returns pointers to
data of type Tout.

/* 3k 3k 3k sk 3k sk ok >k 3k 3k ok sk Sk sk sk sk sk sk ok ok sk sk sk sk sk ok ok ok ok sk sk ok */
/* skxxkxxk fancy_pipeline.cpp sxx*k x/

/*

* Stage) ———— > Stagel ———— > Stage2 ———— > Stage3
Lo | | |
T | |
* AN |
* \

*/

#include <ff/pipeline.hpp> // defines ff_pipeline and ff_Pipe
#include <ff/farm.hpp> // defines ff_minode and ff_monode
using namespace ff;
long const int NUMTASKS=20;
struct StageO: ff_minode_t<long> {
int svc_init () { counter=0; return 0;}
long #*svc(long xtask) {
if (task=NULL) {
for (long i=1;i<=NUMTASKS;++1i)
ff_send_out ((longx)i);
return GO.ON;

17

@l B G

task-farm task-farm + feedback

Figure 3.3: Possible farms and farms+feedback FastFlow skeleton versions.

printf(”Stage0 has got task %ld\n”, (long)task);
++counter;
if (counter == NUMTASKS) return EOS;
return GO.ON;
}
long counter;
}s
struct Stagel: ff_monode_t<long> {

long x*svc(long xtask) {
if ((long)task & 0x1) // sends odd tasks back
ff_send_out_to (task, 0);
else ff_send_out_to(task, 1);
return GO_ON;
}
¥
struct Stage2: ff_monode<long> {

long *svc(long xtask) {
// sends back even tasks less than
if ((long)task <= (NUMTASKS/2))
ff_send_out_to (task, 0);
else ff_send_out_to(task, 1);
return GO_ON;
}
¥
struct Stage3: ff_node_t<long> {

long #*svc(long xtask) {
assert (((long)task & “0x1) && (long)task >(NUMTASKS/2)) ;
return task;
}
}s
int main() {

Stage0 s0; Stagel sl; Stage2 s2; Stage3 s3;
ff_Pipe<long> pipel(s0,sl);
pipel.wrap_-around () ;
ff_Pipe<long> pipe2(pipel,s2);
pipe2.wrap_around () ;
ff_Pipe<long> pipe(pipe2,s3);
pipe.wrap_around () ;
if (pipe.run_and_-wait_end ()<0) error (”running pipe”);
return 0;
}

To create a loopback channel we have used the wrap_around method avail-
able in both the ff_Pipe and the ff_Farm skeletons. More details on feedback

channels in Sec. 3.5

3.2.4 ff farm and ff Farm

Here we introduce the other primitive skeleton provided in FastFlow, namely

the £f_farm skeleton.

18

© 0O Uk WN -

=W N =

DU W

The standard way to create a task-farm skeleton with n workers is to create
n distinct ££_node objects (workers node), pack them in a std: : vector and
then pass the vector to the £f_farm constructor. Let’s have a look at the
following ”hello world”-like program:
[k ok sk sk ok skok sk ok sk sk ok sk ok ok ok ok sk ok sk ok ok ok sk ok ok ok %/

/* kxkxxxx hello_farm .cpp sxsxx %/

#include <vector>
#include <ff/farm.hpp>
using namespace ff;
struct Worker: ff_node {
void *svc(void *t) {
std :: cout << ”Hello I’m the worker 7 << get_my._id () << ”\n”;
return t;
}
b
int main(int argc, char xargv[]) {
assert (argc>1);
int nworkers = atoi(argv[1l]);
std :: vector<ff_node %> Workers;
for (int i=0;i<nworkers;++i) Workers.push_back (new Worker) ;
ff_farm <> myFarm(Workers) ;
if (myFarm.run_and_wait_end ()<0) error (”running myFarm”) ;
return 0;

}
This code basically defines a farm with nworkers workers processing data

items appearing onto the farm input stream and delivering results onto the farm
output stream. The default scheduling policy used to send input tasks to workers
is the ”pseudo round-robin one” (see Sec. . Workers are implemented by the
Worker objects. These objects may represent sequential concurrent activities
as well as further skeletons, that is either pipeline or farm instances. The above
defined farm myFarm has the default Emitter (or scheduler) and the default
Collector (or gatherer) implemented as separate concurrent activity. To execute
the farm synchronously, the run_and_wait_end () method is used.

A different interface for the farm pattern is the one provided by the ff_Farm
class. This interface makes use of std: :unique_ptr which helps to avoid
memory leaks to non-expert FastFlow programmers.

Instead of a std: :vector<ff_nodex>, it gets as first input parameter an
l-value reference to a std: :vector<std: :unique_ptr<ff_node> >. The
vector can be created as follows:

std :: vector<std :: unique_ptr<ff_node> > Workers;
for (int i=0;i<nworkers;++i)

Workers . push_back (make_unique<Workers >()) ;
ff_Farm<> farm (std :: move(Workers)) ;

another way to create the vector of £f_node is by using C++ lambdas as in
the following code:

ff_Farm<> farm([nworkers] () {
std :: vector<std :: unique_ptr<ff_node> > Workers;
for (int i=0;i<nworkers;++1i)
Workers . push_back (make_unique<Worker>()) ;
return Workers;

PO)

From now on, we will use the interface provided by the £f_Farm class.
Let’s now consider again the simple example hello_farm.cpp. Compiling
and running the code we have:

19

CUR W N

Q0O UE WN -

ffsrc$ g++ —std=c++11 —I$FF_ROOT hello_farm .cpp —o hello_farm —pthread
ffsrc$./hello_farm 3
Hello I’'m the worker 0
Hello I’'m the worker 2
Hello I’'m the worker 1

As you can see, the workers are activated only once because there is no input
stream. The only way to provide an input stream to a FastFlow streaming
network is to have the first component in the network generating a stream or
by reading a ”real” input stream. To this end, we may for example use the
farm described above as a second stage of a pipeline skeleton whose first stage
generates the stream and the last stage just writes the results on the screen:

/* >k 3k sk >k 3k sk ok >k sk ok >k sk sk sk sk sk >k sk sk ok sk sk ok >k sk 5k >k sk ok */
/* kxkskkkk hello_farm2.cpp xskxx %/

#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
using namespace ff;
struct Worker: ff_node-t<long> {
int svec_init () {
std :: cout << ”Hello I’'m the worker 7 << get_my_id () << ”\n”;
return 0;
}
long #*svc(long *t) { return t; }
¥
struct firstStage: ff_node_t<long> {
long size=10;
long #*svc(long *) {
for (long i=0; i < size; ++i)
ff_send_out (new long(i));
return EOS; // End—Of-—Stream

} streamGenerator;
struct lastStage: ff_node_t<long> {
long *svc(long *t) {
const long &task = xt;
std :: cout << ”Last stage, received 7 << task << ”"\n”;
delete t;
return GOON;// this means ‘‘no task to send out, let’s go on..."~’
} streamDrainer;
int main(int argc, char xargv[]) {
assert (arge >1);
int nworkers = atoi(argv[1l]);
ff_Farm<long> farm ([nworkers] () {
std :: vector<std :: unique_ptr<ff_node> > Workers;
for (int i=0;i<nworkers;++i)
Workers . push_back (make_unique<Worker>());
return Workers;
PO s
ff_Pipe<> pipe (streamGenerator, farm , streamDrainer);
if (pipe.run_and_wait_end ()<0) error(”running pipe”);

return 0;

In some cases, could be convinient to create a task-farm just from a single
function (i.e. withouth defining the ££_node).
Provided that the function has the following signature
Tout* (*xF) (Tin*, ff_node*const).
a very simple way to instanciate a farm is to pass the function and the number
of workers you want to use (replication degree) in the £f_Farm construct, as
in the following sketch of code:

20

DU W N

© OO Uk WN -

#include <ff/farm.hpp>
using namespace ff;
struct myTask { }; // this is my input/output type

myTasks F(myTask *in,ff_nodexconst node) {...}
ff_Farm<> farm(F, 3); // creates a farm executing 3 replicas of F

Defining Emitter and Collector in a farm

Both emitter and collector of a farm may be redefined. They can be
supplied to the farm as £f_node objectsd Considering the farm skeleton as a
particular case of a a 3-stage pipeline (the first stage and the last stage are the
Emitter and the Collector, respectively), we now want to re-write the previous
example using only the FastFlow farm:

/* 3k 3k 3k >k sk sk ok sk sk ok >k sk sk sk sk sk >k sk ok ok >k sk ok >k sk %k >k sk ok */
/* skxkkkkk hello_farm3.cpp xskxx x/

#include <vector>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
using namespace ff;
struct Worker: ff_node_t<long> {
int svec_init () {
std :: cout << ”?Hello I'm the worker ” << get_my_id () << ”"\n”;
return 0;
¥
long #*svc(long *t) { return t; }
b
struct firstStage: ff_node_t<long> {
long size=10;
long #*svc(long *) {
for (long i=0; i < size; 4++i)
ff_send_out (new long(i));
return EOS;

} Emitter;
struct lastStage: ff_node_t<long> {
long *svc(long xt) {
const long &task=xt;
std :: cout << ”Last stage, received 7 << task << ”\n”;
delete t;
return GO.ON;

} Collector;
int main(int argc, char xargv[]) {
assert (arge >1);
int nworkers = atoi(argv[1l]);
ff_Farm<long> farm([nworkers]() {
std :: vector<std :: unique_ptr<ff_node> > Workers;
for (int i=0;i<nworkers;++1i)
Workers . push_back (make_unique<Worker>()) ;
return Workers;
} (), Emitter, Collector);
if (farm.run_and_-wait_end()<0) error(”running farm”);
return 0;

}
The Emitter node encapsulates the user code provided in the svc method and

the task scheduling policy which defines how tasks will be sent to workers. In the
same way, the Collector node encapsulates the user code and the task gathering
policy so defining how tasks have to be collected from the workers.

21

© 0Tk WN -

17

It is possible to redefine both scheduling and gathering policies of the FastFlow
farm skeleton, please refer to to [16].

Farm with no Collector

We consider now a further case: a farm with the Emitter but without the
Collector. Without the collector, farm’s workers may either consolidates the
results in the main memory or send them to the next stage (in case the farm is
in a pipeline stage) provided that the next stage is defined as ££_minode (i.e.
multi-input node).

It is possible to remove the collector from the ££_farm by calling the method
remove_collector. Let’s see a simple example implementing the above case:

[k sk ok ko sk ok ok kK K R KoK K R KRR KRR Rk ok k[
/* sx#kxxkx hello_farm4 .cpp s#kx*%x x/

/

I T I R R

*

*/
#include <vector>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
using namespace ff;
struct Worker: ff_node_t<long> {
int svec_init () {
std :: cout << ”Hello I'm the worker 7 << get_-my-id () << ”"\n”;
return 0;
¥
long *svc(long *t) {
return t; // it does nothing, just sends out tasks

}
}s
struct firstStage: ff_node-t<long> {
long size=10;
long #*svc(long x*) {
for (long i=0; i < size; ++i)
// sends the task into the output channel
ff_send_-out (new long(i));
return EOS;

} Emitter;
struct lastStage: ff_minode_t<long> { // NOTE: multi—input node
long *svc(long *t) {
const long &task=sxt;
std :: cout << ”Last stage, received 7 << task
<< 7 from ” << get_channel_.id () << "\n”;
delete t;
return GO.ON;

}
} LastStage;
int main(int argc, char xargv[]) {
assert (arge >1);
int nworkers = atoi(argv[1l]);
std :: vector<std :: unique_ptr<ff_node> > Workers;

22

for (int i=0;i<nworkers;++1i)
Workers . push_back (make_unique<Worker>()) ;
ff_Farm<long> farm (std :: move(Workers), Emitter);
farm.remove_collector(); // this removes the default collector
ff_Pipe<> pipe(farm, LastStage);
if (pipe.run_and_wait_end()<0) error(”running pipe”);
return 0;
}

3.3 Tasks scheduling

Sending tasks to specific farm workers

In order to select the worker where an incoming input task has to be directed,
the FastFlow farm uses an internal ff_loadbalancer that provides a method
int selectworker () returning the index in the worker array correspond-
ing to the worker where the next task has to be directed. The programmer
may subclass the £f_loadbalancer and provide his own selectworker ()
method and then pass the new load balancer to the farm emitter, therefore im-
plementing a farm with a user defined scheduling policy. To understand how to
do this, please refer to [I6].

Another simpler option for scheduling tasks directly in the svc method of the
farm emitter is to use the £f_send_out_to method of the ff_loadbalancer
class. In this case what is needed is to pass the default load balancer object
to the emitter thread and to use the £f _loadbalancer::ff send_out_to
method instead of £f_node: : ff_send_out method for sending out tasks.

Let’s see a simple example showing how to send the first and last task to a

specific workers (worker 0).

[k sk sk ok ok sk ok Kk koK K R KK K R KK R KKK KRR Rk 5k /)
/* kxxxxxx ff_send_out_to.cpp skxxkk x/
#include <vector>
#include <ff/farm.hpp>
using namespace ff;
struct Worker: ff_node_t<long> {
long *svc(long xtask) {
std :: cout << ”Worker ” << get_my_id ()
<< ” has got the task ” << =xtask << ”\n”;
delete task;
return GO.ON;
}
}s
struct Emitter: ff_node-t<long> {

Emitter (ff_-loadbalancer *const lb):1b(lb) {}
long =*svc(long *) {
for (long i=0; i <= size; ++i) {
if (i==0 || i == (size —1))
Ib—>ff_send_out_to (new long (i), 0);
else
ff_send_out (new long(i));
}
return EOS;
}
ff_loadbalancer * lb;
const long size=10;
¥

23

30 int main(int argc, char xargv([]) {

31 assert (arge >1);

32 int nworkers = atoi(argv[1l]);

33 std :: vector<std :: unique_ptr<ff_node> > Workers;
34 for (int i=0;i<nworkers;++1i)

35 Workers . push_back (make_unique<Worker>()) ;
36 ff_Farm<long> farm (std :: move(Workers)) ;

37 Emitter E(farm. getlb ());

38 farm.add_emitter (E); // adds the specialized emitter

39 farm.remove_collector(); // this removes the default collector
40 if (farm.run_and_wait_-end()<0) error(”running farm”);

41 return 0;

42 }

Broadcasting a task to all workers

FastFlow supports the possibility to direct a task to all the workers in the farm.
It is particularly useful if we want to process the task by workers implementing
different functions (so called MISD farm). The broadcasting is achieved by
calling the broadcast_task method of the £f_loadbalancer object, in
a very similar way to what we have already seen for the ff_send_out_to
method in the previous section.

In the following a simple example.

/* 3k 3k 5k >k >k sk ok >k sk 5k >k sk 5k >k >k sk >k >k sk 5k >k sk %k %k sk k ok */
/* skxkskkkk farm_misd.cpp kkkxk ok /

#include <vector>
#include <ff/farm.hpp>
using namespace ff;
struct WorkerA: ff_node_-t<long> {
long #*svc(long xtask) {
std:: cout << ”"WorkerA has got the task 7 << xtask << 7\n”;
10 return task;
11 }
12}
13 struct WorkerB: ff_node_t<long> {
14 long *svc(long xtask) {

© 00N Uk WN -

15 std :: cout << ”WorkerB has got the task ” << xtask << 7\n”;
16 return task;

17 }

18 };

19 struct Emitter: ff_node_t<long> {
20 Emitter (ff_-loadbalancer *const 1lb):1b(lb) {}
21 ff_loadbalancer *const lb;

22 const long size=10;

23 long #*svc(long x*) {

24 for (long i=0; i <= size; ++i) {
25 lb—>broadcast_task (new long(i));
26 }

27 return EOS;

28 }

29 };

30 struct Collector: ff_node-t<long> {

31 Collector (ff_gatherer xconst gt):gt(gt) {}
32 ff_gatherer *const gt;

33 long *svc(long xtask) {

34 std :: cout << ”received task from Worker ”? << gt—>get_channel_id ()
<< ”\n”;

35 if (gt—>get_channel_id () == 0) delete task;

36 return GO.ON;

37

38 };

39 int main(int argc, char xargv([]) {

24

[

assert (arge >1);
int nworkers = atoi(argv[1l]);
assert (nworkers >=2);
std :: vector<std :: unique_ptr<ff_node> > Workers;
for (int i=0;i<nworkers/2;++1)
Workers . push_back (make_unique<WorkerA>()) ;
for (int i=nworkers/2;i<nworkers;++i)
Workers . push_back (make_unique<WorkerB>()) ;
ff_ Farm<> farm(std :: move(Workers)) ;
Emitter E(farm.getlb ());
Collector C(farm.getgt());
farm.add_emitter (E); // add the specialized emitter
farm.add_collector (C);
if (farm.run_and_-wait_end ()<0) error(”running farm”);
return 0;

Using auto-scheduling

The default farm scheduling policy is "loosely round-robin” (or pseudo round-
robin) meaning that the Emitter try to send the task in a round-robin fashion,
but in case one of the workers’ input queue is full, the Emitter does not wait
till it can insert the task in the queue, but jumps to the next worker until the
task can be inserted in one of the queues. This is a very simple policy but it
doesn’t work well if the tasks have very different execution costs.

FastFlow provides a suitable way to define a task-farm skeleton with the
”auto-scheduling” policy. When using such policy, the workers "ask” for a task
to be computed rather than (passively) accepting tasks sent by the emitter
(explicit or implicit) according to some scheduling policy.

This scheduling behaviour may be simply implemented by using the method
set_scheduling_ondemand () of the £f_farm class, as in the following:

ff_Farm<> myFarm (...) ;
myFarm. set_scheduling_ondemand () ;

It is worth to remark that, this policy is able to ensure quite good load bal-
ancing property when the tasks to be computed exhibit different computational
costs and up to the point when the Emitter does not become a bottleneck.

It is possible to increase the asynchrony level of the ”request-reply” protocol
between workers and Emitter simply by passing an integer value grater than zero
to the set_scheduling_ondemand () function. By default the asynchrony
level is 1.

3.4 Tasks ordering

Tasks passing through a task-farm can be subjected to reordering because of
different execution times in the worker threads. To overcome the problem of
sending packets in a different order with respect to input, tasks can be reordered
by the Collector. This solution might introduce extra latency mainly because
reordering checks have to be executed even in the case packets already arrive at
the farm Collector in the correct order.

25

The default round-robin and auto scheduling policies are not order preserv-
ing, for this reason a specialised version of the FastFlow farm has been introduced
which enforce the ordering of the packets. The ordered farm may be introduced

© 00U WN -

by using the £f_ofarm skeleton.

/* sk sk sk sk ok ok ok %k sk ok ok %k ok sk ok ok ok ok sk %k sk ok ok %k %k %k ok ok % */
/* sxxkxxkx hello_ofarm .cpp skx*xx x/

#include <vector>
#include <ff/farm.hpp>
#include <ff/pipeline.hpp>
using namespace ff;

typedef std::pair<long,long> fftask_t;

struct Start: ff_node_t<fftask_t> {

Start (long streamlen):streamlen(streamlen) {}

fftask_t xsvc(fftask_t=) {

for (long j=0;j<streamlen;j++) {
ff_send_out (new std:: pair<long,long>(random () % 20000, j));

return EOS;

long streamlen;

s

struct Worker: ff_node_t<fftask_t>
fftask_-t *svc(fftask_t =task) {

{

for (volatile long j=task—>first; j>0;——j);

return task;

}

}s

struct Stop: ff_node_t<fftask_t> {
int svc_init () { expected = 0;
fftask_t xsvc(fftask_t =xtask) {

return 0;}

if (task—>second != expected)

std :: cerr << "ERROR: tasks
<< task—>second << 7 expected 7 << expected << ”\n
»

3

expected++;
delete task;
return GO_ON;

}

long expected;
}s
int main() {

long nworkers = 2, streamlen =
srandom (1) ;

Start start (streamlen);
Stop stop;

received out of order,

1000;

std :: vector<std :: unique_ptr<ff_node> > W;

for (int i=0;i<nworkers;++1i)

W. push_back (make_unique<Worker >()) ;

#if defined (NOT.ORDERED)

ff_Farm<> ofarm(std :: move(W));
#else

ff_OFarm<> ofarm (std :: move(W)) ;
#endif

ff_Pipe<> pipe(start, ofarm, stop);

if (pipe.run_and_wait_end () <0)
error ("running pipe\n”);
return 0;

26

received

”

T W N =

QOO UE WN -

3.5 Feedback channels

There are cases where it is useful to have the possibility to route back some
results to the streaming network input stream for further computation. For
example, this possibility may be exploited to implement the divide&conquer
pattern using the task-farm.

The feedback channel in a farm or pipeline may be introduced by the wrap_around
method on the interested skeleton. As an example, in the following code it is im-
plemented a task-farm with default Emitter and Collector and with a feedback
channel between the Collector and the Emitter:

Emitter myEmitter;

Collector myCollector;

ff_Farm<> myFarm(std :: move(W) ,myEmitter , myCollector) ;
myFarm. wrap_around () ;

Starting with FastFlow version 2.0.0, it is possible to use feedback channels not
only at the outermost skeleton level. As an example, in the following we provide
the code needed to create a 2-stage pipeline where the second stage is a farm
without Collector and a feedback channel between each worker and the farm
Emitter:

/* >k 3k sk >k 3k sk ok >k sk ok >k sk sk sk sk sk >k sk sk sk sk sk 5k >k sk 5k >k sk ok */
/* skxkkxkk feedback.cpp sxskx %/

/

* K K K K ¥ X X ¥ ¥
w2
o+
4
o
[¢)
fen)
|
|
\
w2
[e]

» o
a
Q.

*

/

#include <ff/farm.hpp>
#include <ff/pipeline.hpp>
using namespace ff;

const long streamlength=20;

long *F(long *in,ff_nodexconst) {
*in *= *in
return in;

)

struct Sched: ff_node_t<long> {
Sched (ff_-loadbalancer xconst 1b):1b(1lb) {}
long* svc(long xtask) {
int channel=lb—>get_channel_id () ;
if (channel = -1)
std :: cout << ”"Task 7 << *task << 7 coming from Stage0O\n”;
return task;

std::cout << "Task 7 << xtask << ” coming from Worker” << channel <<
17\n77;
delete task;
return GO.ON;
}
void eosnotify (ssize_-t) {
// received EOS from Stage0O, broadcast EOS to all workers
Ib—>broadcast_task (EOS) ;

}

27

61

ff_loadbalancer xlb;
}s
long *StageO(long#*, ff_nodexconst node) {
for (long i=0;i<streamlength;++i)
node—>ff_send_out (new long(i));
return (longx*)EOS;

int main() {
ff_ Farm<long> farm(F, 3);
farm.remove_collector (); // removes the default collector
// the scheduler gets in input the internal load—balancer
Sched S(farm.getlb());
farm.add_emitter (S);
// adds feedback channels between each worker and the scheduler
farm . wrap_around () ;
// creates a node from a function
ff_node_F <long> stage (Stage0);
// creates the pipeline
ff_Pipe<> pipe(stage, farm);
if (pipe.run_and_wait_end ()<0) error(”running pipe”);
return 0;

}
In this case the Emitter node of the farm receives tasks both from the first stage

of the pipeline and from farm’s workers. To discern different inputs it is used
the ff_get_channel_id method of the £f_loadbalancer object: inputs
coming from workers have channel id greater than 0 (the channel id correspond
to the worker id). The Emitter non-deterministic way processes input tasks
giving higher priority to the tasks coming back from workers.

It is important to note how EOS propagation works in presence of loop-
back channels. Normally, the EOS is automatically propagated onward by the
FastFlow run-time in order to implement pipeline-like termination. When in-
ternal loopback channels are present in the skeleton tree (and in general when
there is multi-input nodes), the EOS is propagated only if the EOS message has
been received from all input channels. In this case is useful to be notified when
an EOS is received so that the termination can be controlled by the program-
mer. In the proposed example above, we want to propagate the EOS as soon as
we receive it from the Stage0 and then to terminate the execution only after
having received all EOS from all workers.

3.6 Mixing farms pipelines and feedbacks

FastFlow pipeline, task-farm skeletons and the feedback pattern modifier can be
nested and combined in many different ways. Figure [3.4] sketches some of the
possible combinations that can be realised in a easy way.

3.7 Software accelerators

FastFlow can be used to accelerate existing sequential code without the need
of completely restructuring the entire application using algorithmic skeletons.
In a nutshell, programmers may identify potentially concurrent tasks within
the sequential code and request their execution from an appropriate FastFlow

28

pipeline + task-farm + feedback

Figure 3.4: FastFlow’s core patterns may be almost arbitrary composed

pattern on the fly.

By analogy with what happens with GPGPUs and FPGAs used to support
computations on the main processing unit, the cores used to run the user defined
tasks through FastFlow define a software ”accelerator” device. This device will
run on the ”"spare” cores available. FastFlow accelerator is a ”software device”
that can be used to speedup portions of code using the cores left unused by
the main application. From a more formal perspective, a FastFlow accelerator
is defined by a skeletal composition augmented with an input and an output
stream that can be, respectively, pushed and popped from outside the acceler-
ator. Both the functional and extra-functional behaviour of the accelerator is
fully determined by the chosen skeletal composition.

Using FastFlow accelerator mode is not that different from using FastFlow
to write an application only using skeletons (see Fig. [3.5)). The skeletons must
be started as a software accelerator, and tasks have to be offloaded from the
main program. A simple program using the FastFlow accelerator mode is shown
below:

QOO Uk WN -

/* 3k 3k 3k 3k 3k 3k ok ok 3k 3k sk sk Sk sk 3k ok 3k ok ok sk sk sk sk 3k ok ok ok ok sk */
/* kxkkkkk accelerator.cpp xskxx k/
#include <vector>
#include <ff/farm.hpp>
using namespace ff;
struct Worker: ff_node-t<long> {
long *svc(long xtask) {
xtask = pow(*xtask,3);
10 return task;
11}
12 };

FastFlow

main

coding
© 1
BUSINESS LOGIC CODE (BC) | software

offload stream: accelerator

load|results
offload strea

e e | —

load| results

¥ self T

offloading

- I
| |
(o el o e
| W W |
| @l @l @l @
L eight-core CPU_______ i

13 int main(int argc,

Figure 3.5: FastFlow software accelerator conceptual design

char xargv[]) {

14 assert (arge >2);

15 int nworkers = atoi(argv[1l]);

16 int streamlen= atoi(argv[2]);

17

18 std :: vector<std :: unique_ptr<ff_node> > Workers;
19 for (int i=0;i<nworkers;++1i)

20 Workers . push_back (make_unique<Worker>()) ;

21

22 ff_Farm<long> farm(std :: move(Workers) ,

23 true /x accelerator mode turned onx/);

24 // Now run the accelator asynchronusly

25 if (farm.run_then_freeze()<0) // farm.run() can also be used here
26 error ("running farm”);

27 long *result = nullptr;

28 for (long i=0;i<streamlen;i++) {

29 long *task = new long(i);

30 // Here offloading computation onto the farm
31 farm . offload (task);

32

33 // do something smart here...

34 for (volatile long k=0; k<10000; ++k);

35

36 // try to get results, if there are any

37 if (farm.load_result_nb(result)) {

38 std::cerr << ”[inside for loop] result= "7 << *xresult << 7\n”;
39 delete result;

40 }

41 }

42 farm. offload (EOS); // sending End—Of—Stream

43 #if 1

44 // get all remaining results syncronously.

45 while (farm.load_result (result)) {

46 std::cerr << ”[outside for loop] result= " << xresult << ”\n”;
47 delete result;

48

49 #else

30

61

// asynchronously waiting for results
do {
if (farm.load_result_nb(result)) {
if (result=—=EOS) break;
std :: cerr << ”[outside for loop] result= " << xresult << ”\n
delete result;
}
} while (1) ;
#endif
farm.wait (); // wait for termination
return 0;
}

The "true” parameter in the farm constructor (the same is for the pipeline)
is the one telling the run-time that the farm (or pipeline) has to be used as
an accelerator. The idea is to start (or re-start) the accelerator and whenever
we have a task ready to be submitted to the accelerator, we simply ”offload”
it to the accelerator. When we have no more tasks to offload, we send the
End-Of-Stream and eventually we wait for the completion of the computation
of tasks in the accelerator or, we can wait_freezing to temporary stop the
accelerator without terminating the threads in order to restart the accelerator
afterwards.

The bool load_result (void =) methods synchronously await for one
item being delivered on the accelerator output stream. If such item is available,
the method returns ”true” and stores the item pointer in the parameter. If
no other items will be available, the method returns ”false”. An asynchronous
method is also available with signature bool load_results_nb (void xx*)
When the method is called, if no result is available, it returns ”false”, and might
retry later on to see whether a result is ready.

3.8 Examples

In this sections we consider an images filtering application in which 2 image
filters have to be applied to a stream of images. We prove different possi-
ble FastFlow implementation using both pipeline and task-farm skeletons. The
different implementations described in the following are sketched in Fig. [3.6
(all but versions img_farm2.cpp and img_farms3.cpp are reported as source code
in this tutorial): the starting sequential implementation (img.cpp), a 4-stage
FastFlow pipeline implementation (img_pipe.cpp), the same version as before
but the pipeline (3-stage) is implemented as a ”software accelerator” while the
image reader stage is directly the main program (img-pipe2.cpp), a 4-stage
FastFlow pipeline with the second and third stages implemented as task-farm
skeletons (img_pipe+farm.cpp), a variant of the previous case, i.e. a 3-stage
pipeline whose middle stage is a farm whose workers are 2-stage pipelines
(img_farm+pipe.cpp), and finally the so called "normal-form”, i.e. a single
task-farm having the image reader stage collapsed with the farm Emitter and
having the image writer stage collapsed with the farm collector (img_farm.cpp).
The last 2 versions (not reported as source code here), i.e. img_farm2.cpp and
img_farm3.cpp, are incremental optimizations of the base img_farm.cpp version

31

© 00U WN -

loop

Read <& o ol h
Blur &
Emboss L

Write disk [}
n

img.cpp =

d

main
Read 3
ffload

-
v o
|)
[~ img_pipe2.cpp

disk

Figure 3.6: Different implementations of the image filtering example.

in which the input and output is performed in parallel in the farm’s workers.

3.8.1 Images filtering

Let’s consider a simple streaming application: two image filters (blur and em-
boss) have to be applied to a stream of input images. The stream can be of any
length and images of any size (and of different format). For the sake of sim-
plicity images’ file are stored in a disk directory and the file names are passed
as command line arguments of our simple application. The output images are
stored with the same name in a separate directory.

The application uses the ImageMagick libraryEI to manipulate the images
and to apply the two filters. In case the ImageMagick library is not installed,
please refer to the "Install from Source” instructions contained in the project
web site. This is our starting sequential program:

[k sk ok ok ok sk ok ok sk ok Kok kK Kok Rk ok ok /
[* kxkkkkk img.cpp kxkkk ok /

#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#include <Magick++.h>
using namespace Magick;

// helping functions: it parses the command line options
char* getOption (char xxbegin, char xxend, const std::string &option) {

3Project web site: http://www.imagemagick.org

32

13 char #xitr = std::find (begin, end, option);

14 if (itr != end && ++itr != end) return =xitr;

15 return nullptr;

16 }

17 int main(int argc, char xargv([]) {

18 double radius = 1.0;

19 double sigma = 0.5;

20 if (arge < 2) {

21 std ::cerr << "use: ” << argv[0] << 7 [—r radius=1.0] [—s sigma
=.5] image—files\n”;

22 return —1;

23

24 int start = 1;

25 char xr = getOption (argv, argvtargc, "—r”);

26 char *xs = getOption (argv, argvtargc, "—s”);

27 if (r) { radius = atof(r); start+=2; argc—=2; }

28 if (s) { sigma = atof(s); start+=2; argc—=2; }

29

30 InitializeMagick (xargv);

31

32 long num_images = argc —1;

33 assert (num_images >= 1);

34 // for each image apply the 2 filter in sequence

35 for (long i=0; i<num_images; ++i) {

36 const std::string &filepath (argv[start+i]);

37 std :: string filename;

38

39 // get only the filename

40 int n=filepath.find_last_of(”/”);

41 if (n>0) filename = filepath.substr(n+1);

42 else filename = filepath;

43

44 Image img;

45 img.read (filepath);

46

47 img. blur (radius, sigma);

48 img.emboss (radius, sigma);

49

50 std :: string outfile = ”?./out/” + filename;

51 img.write(outfile);

52 std::cout << ”image 7 << filename

53 << 7 has been written to disk\n”;

54 }

55 return 0;

56 1}

Since the two filters may be applied in sequence to independent input images,
we can compute the two filters in pipeline. So we define a 4-stage pipeline: the
first stage read images from the disk, the second and third stages apply the two
filters and the forth stage writes the resulting image into the disk (in a separate
directory). The code for implementing the pipeline is in the following:

2 /® skxkkkkk img_pipe.cpp kxkkx k/

3

4 /=

5 % Read —> Blur —> Emboss —> Write
6 x

7 x/

8 #include <cassert >

9 #include <iostream>
10 #include <string>
11 #include <algorithm>

13 #define HAS_CXX11_VARIADIC_.TEMPLATES 1

14 #include <ff/pipeline.hpp>
15 #include <Magick++.h>

33

using namespace Magick;
using namespace ff;

// this is the input/output task containing all information needed

struct Task {
Task (Image *image, const std

Image ximage;
const std::string name;

::string &name,
image (image) ,name(name) ,radius (r) ,sigma(s) {};

const double radius ,sigma;

3

charx getOption (char xxbegin,

return nullptr;

// 1lst stage
struct Read: ff_node_t <Task>

double r=1.0,double s=0.5):

char xxend, const std::string &option) {
char *xitr = std:: find (begin, end, option);
if (itr != end && ++itr != end) return =xitr;

{

Read (char xximages, const long num_images, double r, double s):
images ((const chars*x)images) ,num_images(num_images) ,radius(r),

sigma(s) {}

Task *svc(Task *) {

for (long i=0; i<num_images; ++i) {
const std::string &filepath (images[i]);
std :: string filename;

// get only the filename
int n=filepath.find_last_of (”/”);
if (n>0) filename = filepath .substr(n+1);

else filename

= filepath;

Image *ximg = new Image;;
img—>read (filepath);

Task *t = new Task (img,
ff_send_out (t); // sends

return EOS; // computation completed

const char xximages;
const long num_images;

const double radius ,sigma;

G

// function executed by the 2nd stage

Task* BlurFilter (Task *in, ff_-nodexconst) {

in—>image—>blur (in—>radius , in—>sigma);

return in;

// function executed by the 3rd stage

Task* EmbossFilter (Task xin,

in—>image—>emboss (in—>radius ,

return in;

ff_node*const)

// function executed by the 4th stage
Task* Write(Task* in, ff_nodexconst) {
std::string outfile = ”./out/” + in—>name;

in—>image—>write (outfile)
std :: cout << ”image 7 <<
delete in—>image;

delete in;

return (Taskx*)GOON;

)

in—>name << ”

int main(int argc, char xargv[]) {

if (arge < 2) {

std::cerr << 7use: ” << argv[0]

<< ” [-r radius=1.0]

34

{

in—>sigma) ;

filename ,radius ,sigma) ;
the task t to the next stage

has been written to disk\n”;

[-s sigma=.5] image—files\n”;

© 000U WN -

return —1;

1st

3nd

//
// 2nd
//
// 4th

double radius=1.0,sigma=0.5;

int start = 1;

char xr = getOption (argv, argvtargc, "—r”);

char *s = getOption(argv, argv+4argc, 7—s”);

if (r) { radius = atof(r); start+=2; argc—=2; }

if (s) { sigma = atof(s); start+=2; argc—=2; }

InitializeMagick (xargv);

long num_images = argc —1;

assert (num_images >= 1);

Read read(&argv[start], num-_images, radius, sigma);

ff_node_F <Task> blur (BlurFilter);

ff_node_F <Task> emboss(EmbossFilter);

ff_node_F <Task> write (Write) ;

ff_Pipe<> pipe(read, blur,emboss, write);

if (pipe.run_and_wait_end ()<0) { // executes the pipeline
error ("running pipeline\n”);
return —1;

return O0;

}

It is possible to instantiate the pipeline as a software accelerator. In the following
we report only the code of the main function since it is the only part of the code

that differs:

/* sk sk sk 3k ok ok ok %k sk ok ok ok ok sk ok 5k ok ok ok sk ok ok ok %k ok k ok */
/% skkkxkx Img_pipe2.cpp *kxkkx x/

/*
* main
* |
* —>|
* | Read
* | offload ——> pipeline(BlurFilter , EmbossFilter ,
* -
* |
*/
int main(int argc, char xargv[]) {
if (arge < 2)
std::cerr << 7use: ” << argv[0]
<< ” [—-r radius=1.0] [—s sigma=.5]
return —1;

double radius=1.0,sigma=0.5;

int start = 1;

char xr = getOption (argv, argvtargc, "—r”);
char *s = getOption(argv, argv+4argc, 7"—s”);

if (r) { radius = atof(r); start+=2; argc—=2; }
if (s) { sigma = atof(s); start+=2; argc—=2; }

InitializeMagick (xargv);

long num_images = argc —1;
assert (num_images >= 1);

ff_node_F <Task> blur (BlurFilter);
ff_node_F <Task> emboss(EmbossFilter);
ff_node_F <Task> write (Write) ;

ff_Pipe<> pipe(true, // enable accelerator
blur , // 2nd stage
emboss , // 3rd stage
write); // 4th stage

Write

stage
stage
stage
stage

)

image—files \n”;

40 if (pipe.run_then_freeze()<0) { // start the pipeline
41 error ("running pipeline\n”);

42 return -—1;

43

44 for (long i=0; i<num_images; ++i) {

45 const std::string &filepath (argv[start+i]);

46 std::string filename;

47

48 // get only the filename

49 int n=filepath.find_-last_of(”/”);

50 if (n>0) filename = filepath.substr(n+1);

51 else filename = filepath;

52

53 Image *ximg = new Image;;

54 img—>read (filepath);

55 Task *t = new Task(img, filename ,radius ,sigma);
56 pipe.offload (t); // sends the task t to the pipeline
57 }

58 pipe.offload (EOS); // sends the End—Of-—Stream

59

60 if (pipe.wait()<0) { // wait for pipeline termination
61 error ("waiting pipeline\n”);

62 return —1;

63

64 return 0;

65 }

Now, since the same filter may be applied in parallel to independent input
images, we can replace the second and third stage with two task-farm having
the same previous stage as worker. This is safe because we know that we can
replicate the function computing the filters: it is thread safe and has no internal
shared state. The resulting code is:

1 /* sk 5k 5k sk 3k sk sk ok K K K 5K 5k ok K 3k sk ok sk ok K K K K ok K K ok ok K */

2 /% skxkxkxk img_pipetfarm.cpp skxkxx x/

3

4 /=

5 % —> Blur — —> Emboss —

6 \ | |

7 % Read —> Sched |-—> Blur ——|—— >Sched |-—> Emboss ——| —> Write
8 x |

9 x —> Blur — —> Emboss —

10 =/

11 #include <cassert>

12 #include <iostream>

13 #include <string>

14 #include <algorithm>

15 #include <ff/pipeline.hpp>
16 #include <ff/farm.hpp>

17 #include <Magick++.h>

18 using namespace Magick;

19 using namespace ff;

20 struct Task {

21 Task (Image *image, const std::string &name, double r=1.0,double s=0.5)

22 image (image) ,name(name) ,radius (r) ,sigma(s) {};
23 Image *image ;

24 const std::string name;

25 const double radius ,sigma;

26 };

27 typedef std::function<Tasks*(Task#,ff_-node*const)> fffarm_f;
28 charx getOption(char xxbegin, char xxend, const std::string &option) {

29 char *xitr = std::find (begin, end, option);
30 if (itr != end && ++itr != end) return =xitr;
31 return nullptr;

32 }

36

33

35
36

// 1lst stage
34 struct Read:

Read (char xximages,

ff_node_t <Task> {

const long num_images, double r, double s):

images ((const chars*x)images) ,num_images(num_images) ,radius(r),
sigma(s) {}

Task *xsvc(Task *) {
i<num_images;

for (long
const std ::

std ::

i=0;

+i) {
string &filepath (images[i]) ;
string filename;

// get only the filename
int n=filepath.find_last_of(”/”);
if (n>0) filename = filepath.substr(n+1);

e

Image *img

Ise

Task *t

std ::
ff_send_-out (t);

return EOS;

filename = filepath;

= new Image;;
img—>read (filepath);
new Task (img,

filename ,radius ,sigma) ;

cout << ”sending out ” << filename << ”\n”;
// sends the task t to the next

// computation completed

const char *xximages;
const long num-_images;
const double radius, sigma;

I

// function

Task* BlurFilter (Task xin,
in—>image—>blur (in—>radius ,
in;

return

// function executed by the 3rd
Task* EmbossFilter (Task xin,

executed by the 2nd stage

s

in—>image—>emboss (in—>radius ,

return

in;

s

stage
ff_node*const)

ff_nodexconst) {
in—>sigma) ;

{

in—>sigma) ;

// function executed by the 4th stage
Task *Write (Task* in,
std::string outfile = 7./out/” + in—>name;
in—>image—>write (outfile);

std :: cout << ”image

delete
delete

in—>image ;

in

3

ff_nodexconst)

return (Taskx*)GOON;

// 4th stage

struct Writer:

Task *svc(Task xtask) {
return Write (task, this);

}
I

int main(int argc,

if (argec < 2)

std ::cerr <<
<<
<<
<<
<<
return —1;
}
double

”»

”»

”»

”»

”»

use: 7 << argv[0]
[-r radius=1.0]"

char xargv[]) {

[-=s sigma=.5]”

[—mn blurWrk=2]”
[—m embossWrk=2]

radius=1.0,sigma=0.5;

int blurWrk = 2,
int start

char xr
char xs

= 1;

)

getOption (argv,
getOption (argv,

embossWrk =

2;

37

{

? << in—>name <<

argv+4argc ,
argvtargec ,

”»

ff_minode_t <Task> { // this

has been written

is a multi—input

image—files\n”;

”»

”»

=r?) g
—s”);

stage

to disk\n”;

node

© 00Uk WN -

10
11

char *n = getOption(argv, argv+4argc, ”"—n”);
char xm = getOption(argv, argv4argc, ”"—m’);
if (r) { radius = atof(r); start+=2; argc—=2; }
if (s) { sigma = atof(s); start+=2; argc—=2; }
if (n) { blurWrk = atoi(n); start+=2; argc—=2; }
if (m) { embossWrk = atoi(m); start+=2; argc—=2; }

InitializeMagick (xargv);

long num_images = argc —1;
assert (num_images >= 1);

ff_Farm<Task> blurFarm (BlurFilter ,blurWrk) ;
blurFarm.remove_collector () ;
blurFarm.set_scheduling_ondemand () ;

ff_Farm<Task> embossFarm (EmbossFilter ,embossWrk) ;

// this is needed because the previous farm does not has the

Collector
embossFarm . setMultilnput () ;
embossFarm.remove_collector () ;
embossFarm . set_scheduling_ondemand () ;

Read read(&argv[start], num_images, radius, sigma);
Writer write;
ff_Pipe<> pipe(read, // 1lst stage
blurFarm , // 2nd stage
embossFarm, // 3rd stage
write); // 4th stage
if (pipe.run_and_wait_end ()<0) { // executes the pi

error ("running pipeline\n’
return —1;

IE
}

return 0;

}

A possible variant of the previous implementation, which uses only one scheduler

is the following one:

[k sk ok ok ok ok ok ok ok ok R KR R R KRR KRR Rk ok ok Rk /
/* kxkkkxk img_farm+pipe.cpp #kkkx */

/ *

* —> Blur —> Emboss —

* | |

* Read —> Sched —|——> Blur —> Emboss ——| —>Write
* | |

* —> Blur —> Emboss —

*

*/

12 #include <cassert>
13 #include <iostream>
14 #include <string>
15 #include <algorithm>

16

17 #include <ff/pipeline.hpp>
18 #include <ff/farm.hpp>
19 #include <Magick++.h>

using namespace Magick;
using namespace ff;
struct Task {

Task (Image ximage, const std::string &name, double
=0.5):
image (image) ,name(name) ,radius (r) ,sigma(s) {};
Image *image ;
const std::string name;
const double radius;
const double sigma ;
s
charx getOption (char xxbegin, char *xend, const std::st

38

peline

r=1.0,double s

ring &option) {

char *xitr
if (itr !=

end && ++itr

std :: find (begin ,

return nullptr;

// 1lst stage

struct Read: ff_node_t<Task> {

Read (char xximages,

Task *svc(Task *) {
for (long
const

std ::

1 =g

std ::

end

)

option);

i<num-images; ++i) {

string filename;

// get only the filename
int n=filepath.find_last_of(”/”);
if (n>0) filename = filepath.substr(n+1);
filename = filepath;

else

Image *img

Task *t = new Task(img,

std ::

ff_send_-out (t);

}
return EOS;

= new Image;;
img—>read (filepath);

const long num-images,

// computation completed

const char *xximages;
const long num-_images;
const double radius, sigma;

G

// function executed by the 2nd stage

Task* BlurFilter (Task xin,
in—>image—>blur (in—>radius ,

return in;

// function executed by the 3rd
Task* EmbossFilter (Task xin,

in—>image—>emboss (in—>radius ,

return in;

stage
ff_node*const)

ff_nodexconst) {
in—>sigma) ;

{

in—>sigma) ;

// function executed by the 4th stage
Task *Write (Task* in,

std::string outfile = 7./out/” + in—>name;

ff_node*const)

in—>image—>write (outfile);

std :: cout << ”image

delete in—>image;

delete in;

return (Taskx)GOON;

}
// 4th stage
struct Writer:

}
18

int main(int argc,

{

” << in—>name << 7

ff_minode_t <Task> { // this
Task *xsvc(Task xtask)
return Write(task , this);

if (arge < 2) {
std :: cerr

return

=1

<<
<<
<<
<<

”»

”»

”»

”»

char xargv[]) {

use: 7 << argv [0]
[-r radius=1.0]”

[-s sigma=.5]"
[—m Wrk=2] image—files\n”;

39

!= end) return xitr;

double r, double s):
images ((const chars*x)images) ,num_images(num_images) ,radius(r),
sigma(s) {}

string &filepath (images[i]) ;

filename ,radius ,sigma) ;
cout << ”sending out 7 << filename << ”\n”;
// sends the task t to the next

has been written

is

a multi—input

stage

to disk\n”;

node

double radius=1.0,sigma=0.5;

int Wrks = 2;

int start = 1;

char *xr = getOption (argv, argvtargc, "—r”);
char xs getOption (argv, argv+argc, 7—s”);
char x*n getOption (argv, argv4argc, ”"—n”);

if (r) { radius = atof(r); start+=2; argc—=2;
if (s) { sigma atof(s); start+=2; argc—=2;
if (n) { Wrks atoi(n); start+=2; argc—=2;

R e e o

InitializeMagick (xargv);

long num_images = argc —1;
assert (num_images >= 1);

std :: vector<std :: unique_ptr<ff_node> > W;
for (int i=0;i<Wrks;++1i)

W. push_back (make_unique<ff_Pipe <Task> >(make_unique<ff_node_F <

Task> >(BlurFilter),

make_unique<ff_node_F <Task>

>(EmbossFilter)));
ff_Farm<Task> farm (std :: move(W)) ;
farm.remove_collector () ;
farm.set_scheduling_ondemand (); // set auto scheduling

Read read(&argv[start], num_images, radius, sigma);
Writer write;
ff_Pipe<> pipe(read, // 1lst stage
farm , // 2nd stage
write); // 3th stage
if (pipe.run_and_-wait_end()<0) { // executes the pipeline
error ("running pipeline\n”);
return —1;

return 0;

}

The next step is to reduce the number of resources used. For example the farm
Emitter can be used to read files from the disk, whereas the farm Collector for
writing files to the disk. Furthermore, the blur and emboss filters may be com-
puted sequentially using a single workers. This is the so called "normal form”
obtained optimising the resource usage. The code implementing the normal

© 000Uk WN -

form is the following:

/* 3k 3k 5k >k >k 5k ok >k sk 5k >k sk 5k >k sk sk ok >k 5k >k >k sk %k >k sk ok */
/* skxkskkkk img_farm.cpp kxskkx ok /

/%

*

* —> Blur+Emboss —

o \ |

* Read+Sched ——|——> Blur+Emboss ——|——>Collector+Write
* \ |

* —> Blur+Emboss —

*/

#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>

#define HAS_CXX11_.VARIADIC_.TEMPLATES 1
#include <ff/pipeline.hpp>

#include <ff/farm.hpp>

#include <Magick++.h>

using namespace Magick;

using namespace ff;

struct Task {

40

Task (Image *image, const std::string &name, double r=1.0,double s
=0.5):
image (image) ,name(name) ,radius (r) ,sigma(s) {};
Image *image ;
const std::string name;
const double radius , sigma;
}s
charx getOption(char *xbegin, char xxend, const std::string &option) {

char #xitr = std::find (begin, end, option);
if (itr != end && ++itr != end) return =xitr;
return nullptr;

// 1lst stage
struct Read: ff_node_t<Task> {

Read (char xximages, const long num_.images, double r, double s):

images ((const chars*x)images) ,num_images(num_images) ,radius(r),
sigma(s) {}
Task *svc(Task *) {
for (long i=0; i<num_images; ++i) {
const std::string &filepath (images[i]);
std ::string filename;
// get only the filename
int n=filepath.find_-last_of (”/”);
if (n>0) filename = filepath .substr(n+1);
else filename = filepath;
Image *ximg = new Image;;
img—>read (filepath);
Task *t = new Task(img, filename ,radius ,hsigma);
std :: cout << ”sending out 7 << filename << 7\n”;
ff_send_out (t); // sends the task t to the next stage
return EOS; // computation completed
}
const char sximages;
const long num_images;
const double radius ,sigma;
b
// function executed by the 2nd stage

Task* BlurFilter (Task *in, ff_-nodexconst) {
in—>image—>blur (in—>radius , in—>sigma);
return in;

// function executed by the 3rd stage
Task* EmbossFilter (Task *in, ff_nodexconst) {
in—>image—>emboss (in—>radius , in—>sigma) ;
return in;
struct BlurEmbossWrapper: ff_node_t <Task> {
Task *svc(Task xtask) {
return EmbossFilter (BlurFilter (task ,this) , this);

¥
// function executed by the 4th stage

Task *Write(Task* in, ff_nodexconst) {
std::string outfile = ”./out/” + in—>name;

in—>image—>write (outfile) ;
std::cout << ”image ” << in—>name << ” has been written to
delete in—>image;
delete in;
return (Taskx*)GO_ON;
}

41

disk\n” ;

90 // 4th stage

91 struct Writer: ff_minode_t<Task> { // this is a multi—input node
92 Task *svc(Task xtask) {

93 return Write (task, this);

94 }

95 };

96

97 int main(int argc, char xargv[]) {

98 if (arge < 2) {

99 std ::cerr << 7use: 7 << argv [0]

100 << 7 [-r radius=1.0]"

101 << 7 [—s sigma=.5]"

102 << ” [—n Wrks=2]"

103 << 7 [—m Wrk=2] image—files\n”;

104 return —1;

105

106 double radius=1.0,sigma=0.5;

107 int Wrks = 2;

108 int start = 1;

109 char *r = getOption(argv, argv+4argc, 7"—r”);

110 char *s = getOption(argv, argv4argc, 7"—s”);

111 char *n = getOption(argv, argv4argc, ”"—n”);

112 if (r) { radius = atof(r); start+=2; argc—=2; }
113 if (s) { sigma = atof(s); start+=2; argc—=2; }
114 if (n) { Wrks = atoi(n); start+=2; argc—=2; }
115

116 InitializeMagick (xargv);

117 long num_images = argc —1;

118 assert (num_images >= 1);

119

120 std :: vector<std :: unique_ptr<ff_node> > W;

121 for (int i=0;i<Wrks;++1i)

122 W. push_back (make_unique<BlurEmbossWrapper >()) ;
123

124 Read read(&argv[start], num_images, radius, sigma);
125 Writer writer ;

126 ff_Farm<Task> farm(std:: move(W), read, writer);
127 farm.set_scheduling_ondemand () ;

128

129 if (farm.run_and_-wait_end ()<0) { // executes the task—farm
130 error ("running pipeline\n”);

131 return —1;

132 }

133 return 0;

134 }

42

Chapter 4

Data parallelism

In data parallel computation, data structures (typically large) are partitioned
among the number of concurrent resources each of which computes the same
function on the assigned partition. In a nutshell, the input task, possibly but
not necessarily coming from an input stream, is split into multiple sub-task
each one computed in parallel and then collected together in one single output
task. The computation on the sub-tasks may be completely independent (i.e.
the sub-task computation uses data only coming from the the current sub-task)
or dependent on previously computed data (non necessarily in the correspond-
ing sub-task). The main goal of data parallel computation is to reduce the
completion time of the single task to compute. It is important to note that,
data decomposition using large sub-tasks, together with static assignment of
such partitions to workers, may introduce load imbalance during the compu-
tation mainly because of the variable calculation time associated to distinct
partitions. In general, it is possible to state that load balancing is a feature of
anonymous task assignment, i.e. tasks to be computed are dynamically assigned
to available computing resources, without a-priori correspondence between tasks
and available computing resources. The task-farm paradigm is naturally based
on this concept (where tasks are stream items), and for this reason quite often
data-parallel computations are implemented on top of the task-farm skeleton by
using the auto-scheduling policy (see Sec. . Many other scheduling strategies
have been devised for balancing data-parallel computations, among these, the
work-stealing scheduling strategy is of particular importance. It is worth to note
here that, when the task-farm is used to implement an unbalanced data parallel
computation, it is possible to ”customise” it to use a work-stealing scheduling
strategy. In other words, the task-farm pattern just models functional repli-
cation, while data partitioning and task-scheduling depends on the way the
Emitter entity is implemented.

Well known and widely used data parallel skeletons are: map reduce and
stencil.

43

T W N =

4.1 Data parallel skeletons

In this section we describe map-like and reduce-like patterns, whereas the stencil
pattern is not covered.

map

The simplest data parallel computation is the map, in which the concurrent
workers operating on a partition of the input data structure (typically an N-
dimensional array) are fully independent, i.e. each of them operates on its own
local data only, without any cooperation with other computing resources. As
an example consider the following piece of code:

const size_t N = 1<<15;

long A[N],B[N];

for (size_-t i=1; i<N; 4+i)
Ali—1] = F(BJi]);

A[N—1] = F(B[0]) ;

If the function F' has no internal state, each loop iteration may be computed
independently since there are no true dependency among iterations. In this case
we may apply the map pattern, splitting the two arrays A, B in n = %
parts and assign each part to one worker. Each worker executes the same loop
as above on a restricted index range. In principle, the execution time can be
reduced by a factor of n if we consider a run-time with zero overhead, and as a
particular case, if nworkers = N, the execution time is reduced from O(N) to
O(1). Tt is worth to note that, the map skeleton may be simply implemented
using a task-farm skeleton operating on a single input data. The Emitter split
the input arrays and distributes the partitions to each worker. The workers
apply the function F' on the input partition, finally the Collector collects the
workers’ partitions in one single output task.

Loop-parallelism

A sequential iterative kernel with independent iterations is also known as a par-
allel loop. Parallel loops may be clearly parallelized by using the map or farm
skeletons, but this typically requires a substantial re-factoring of the original
loop code with the possibility to introduce bugs and not preserving sequen-
tial equivalence. Furthermore, the selection of the appropriate implementation
skeleton together with a correct implementation of the sequential wrapper code
is of foremost importance for obtaining the best performance.

For these reasons, in the FastFlow framework there are a set of data par-
allel patterns implemented on top of the basic FastFlow skeletons to ease the
implementation of parallel loops.

4.2 FastFlow abstractions

In this section we describe the different parallel-for abstractions that are used to
implement almost all data-parallel skeletons currently available in the FastFlow

44

framework for multi-core systems.

4.2.1 ParallelFor

Here we introduce the FastFlow ParallelFor pattern that can be used to paral-
lelize loops having independent iterations:

for (long idx=first; idx < last; idx += step) bodyF;

The class interface of the ParallelFor pattern is described in the parallel_for.hpp
file. The constructor accepts two parameters:

ParallelFor (const long maxnworkers=FF_AUTO,bool spinWait=false);

the first parameter sets the maximum number of worker threads that can
be used in the ParallelFor (that is the maximum concurrency degree), the sec-
ond argument sets non-blocking run-time for parallel computations. At the
beginning you may just leave the default parameters for these two arguments.

The ParallelFor object, encapsulates a number of parallel_for meth-
ods, which differentiate each other for the number of arguments they get and
for the signatures of the function body. A single ParallelFor object can be used
as many times as needed to run different parallel-for instances (different loop
bodies). Nested invocations of ParallelFor methods are not supported.

The loop body may be a standard function or a C++11 lambda-function.
A C++11 lambda-function is a new feature of the C++11 standard already
supported by many compilers. They are unnamed closures (i.e. function objects
that can be constructed and managed like data) that allow functions to be
syntactically defined where and when needed. When lambda functions are built,
they can capture the state of non-local variables named in the wrapped code

either by value or by reference.
The following list presents the most useful parallel-for methods provided by
the ParallelFor class:

parallel_for (first, last, bodyF, nworkers);// step=1,grain=FF_AUTO
parallel_for (first,last, step, bodyF, nworkers);// grain=FF_AUTO
parallel_for (first, last, step,grain, bodyF, nworekrs);

bodyF = F(const long idx);

parallel_for_thid(first, last,step,grain, bodyF, nworkers);
bodyF = F(const long idx,const int thid);
// thid is the id of the thread executing the body function

parallel_for_idx(first, last,step,grain, bodyF, nworkers);
bodyF = F(const long begin,const long end,const int thid);

Now, given the following sequential loop:

auto F = [] (const long i) { return ixi;}
for(long i=1; i < 100; 1 +=2) A[i] = F(i);

we can write the following parallel-for:

ParallelFor pf;
auto F = [] (const long i) { return ixi;}
pf.parallel_for(1,100,2, [&A] (const long i) { A[i]=F(i);});

45

© 0O Uk WN -

or by using the parallel_for_idx we have:

ParallelFor pf;
auto F = [] (const long i) { return ixi;}
pf.parallel_for_idx(1,100,2, [&A] (const long begin,const long end,
const int thid) {
std::cout << "Hello I’'m thread " << thid
<< " executing iterations (" << start <<"," << end <<")\n";
for (long i=begin; i<end; i += 2) A[i]=F(1);
1)

the parallel_for_idx is just a ”"low-level” version of the parallel_for,
where the internal loop, iterating over all iterations assigned to the worker, has
to be written directly by the user. This may be useful when it is needed to
execute a pre-computation (executed in parallel) before starting the execution
of the loop iterations, or in general for debugging purposes.

It is important to remark that, when spinWait is set to true (see Sec.
for details), in some particular cases, the body function is called the first time
with begin==end==0 so it would be safe to test this condition at the beginning
of the parallel for_idx (i.e. if (begin==end) return;).

Let’s now see a very simple usage example of the parallel-for:

[k sk ok sk ok ok ok koK Rk koK R Rk R Rk ok %/
/* kxkkkkk parforl.cpp skkxx %/

#include <ff/parallel_for .hpp>
using namespace ff;

int main(int argc, char xargv[]) {
assert (arge >1);
long N = atol(argv[1l]);
long *A = new long[N];
ParallelFor pf;
// initialize the array A
pf.parallel_for (0,N,[&A](const long i) { A[i]=i;});
// do something on each even element of the array A
pf.parallel_for (0,N,2,[&A](const long i) { A[i]=ix*i;});
// print the result
for (long i=0;i<N;++4+i) std::cout << A[i] << 7 7}
std :: cout << ”\n”;
return 0;
}
in this case, first the array A has been initialised using a parallel-for and then

the square value of the even entries is computed in parallel over N/2 iterations.

Iterations scheduling

Three distinct iteration schedulings are currently possible in parallel-for com-
putations:

1. default static scheduling: the iteration space is (almost) evenly parti-
tioned in large contiguous chunks, and then they are statically assigned
to workers, one chunk for each worker.

2. static scheduling with interleaving k: the iteration space is stat-
ically divided among all active workers in a round-robin fashion using

46

a stride of k. For example, to execute 10 iterations (from 0 to 9) us-
ing a concurrency degree of 2 and a stride k = 3, then the first thread
executes iterations 0,1,2,6,7,8 and the second thread executes itera-
tions 3,4,5,9. The default static scheduling is obtained setting a stride
k = iterationspace /nworkers.

3. dynamic scheduling with chunk k: in this case no more than k con-
tiguous iterations at a time are dynamically assigned to computing work-
ers. As soon as a worker completes computation of one chunk of itera-
tions, a new chunk (if available) is selected and assigned to the worker.
The run-time tries to select as many as possible contiguous chunks in or-
der to better exploit spatial locality. This allows to have a good trade-off
between iterations affinity and load-balancing.

By default the default static scheduling is used. In general, the scheduling
policy is selected by specifying the grain parameter of the parallel_for
method. If the grain parameter is not specified or if its value is 0, then
the default static scheduling is selected. If grain is greater than zero, then
the dynamic scheduling is selected with k = grain. Finally, to use the static
scheduling with interleaving k the parallel_for_static method must be
used with k& = grain. Note that, if in the parallel_for_static the grain
parameter is zero, than the default static scheduling policy is selected.

Summarising, in the following different scheduling strategies are selected
according to the grain parameter:

pf.parallel_for(1,100,2, bodyF); // default static sched.
pf.parallel_for(1,100,2, 0,bodyF); // default static sched.
pf.parallel_for(1,100,2,10,bodyF); // dynamic sched. with k=10
pf.parallel_for_static(1,100,2,10,bodyF);// static sched.

// interleaving k=10
pf.parallel_for_static(1,100,2,0,bodyF); // default static sched.

threadPause and disableScheduler

The spinWait parameter in the ParallelFor constructor enables non-blocking
computation between successive calls of parallel_for methods. This means
that if the parallel-for is not destructed and not used for a while, the worker
threads will be active in a busy waiting loop. In this case it may be useful to
"pause” the threads until the parallel-for pattern is used again. To attain this,
the threadPause method can be used. The next time the parallel-for is used,
the non-blocking run-time will be still active.

Another interesting option of the ParallelFor object, is the possibility to
switch between two distinct run-time support for the scheduling of loop itera-
tions:

1. active scheduling where an active non-blocking scheduler thread (the farm’s
Emitter) is used to implement the auto-scheduling policy;

47

2. passive scheduling where workers cooperatively schedule tasks via non-
blocking synchronisations in memory.

Which one is better ? It is difficult to say, as it depends on many factors:
parallelism degree, task granularity and underlying platform, among others. As
a rule of thumb, on large multi-core and with fine-grain tasks active scheduling
typically runs faster; on the other hand, when there are more threads than
available cores the passive scheduler allows reduction of CPU conflicts obtaining
better performance.

By default, if the number of active workers is less than the number of avail-
able cores, than the active scheduling is used. To dynamically switch between
active (false) and passive (true) scheduling strategies the disableScheduler
method can be used.

4.2.2 ParallelForReduce

The FastFlow ParallelForReduce is used to perform a parallel-for compu-
tation plus a reduction operation (by using a combiner function named reduceF
in the following) over a sequence of elements of type T. In order to determin-
istically compute the result, the reduction function needs to be associative and

commutative.
The constructor interface is:

ParallelForReduce<T> (const long max=FF_AUTO,bool spinwait=false);

where the template type T is the type of the reduction variable, the first pa-
rameter sets the maximum number of worker threads that can be used in the

ParallelForReduce, the second argument sets non-blocking run-time.

The ParallelForReduce class provides all the parallel-for methods al-
ready provided by the ParallelFor class and a set of additional parallel_reduce
methods:

parallel_reduce (var,identity, first, last,

bodyF, reduceF, nworkers);// step=1,grain=FF_AUTO
parallel_reduce (var, identity, first, last, step,

bodyF, reduceF, nworkers);// grain=FF_AUTO
parallel_reduce (var, identity, first,last,step,grain,

bodyF, reduceF, nworekrs);
bodyF =F (const long idx,T& var);
reduceF =R(T& var,const T& elem);

parallel_reduce_thid(var, identity, first,last,step,grain,
bodyF, reduceF, nworkers);

bodyF =F (const long idx,T& var,const int thid);

reduceF =R(T& var,const T& elem);

// thid is the id of the thread executing the body function

parallel_reduce_idx (var,identity, first,last,step,grain,

bodyF, reduceF, nworkers);
bodyF =F (T& var,const long begin,const long end,const int thid);
reduceF =R(T& var,const T& elem);

48

© 000Uk WN -

46

The reduceF function specified in all parallel_reduce methods, executes
the reduction operation.
As an example, let’s consider the simple case of the sum of array’s elements:

[skok sk ok ok skok sk ok sk ok ok sk ok sk ok ok koK Rk ok sk ok sk ok ok /
/% kkkkkkk Arraysumn . Ccpp kkkkx ok /

#include <iostream>
#include <ff/parallel_for .hpp>
using namespace ff;
const size_t SIZE= 1<<20;
int main(int argc, char x argv[]) {
assert (arge > 1);
int nworkers = atoi(argv([1l]);
// creates the array
double *A = new double [SIZE |;

ParallelForReduce<double> pfr (nworkers) ;
// fill out the array A using the parallel —for
pfr.parallel_for (0,SIZE,1, 0, [&](const long j) { A[j]=j*1.05});

auto reduceF
auto bodyF
{
double sum = 0.0;
std :: cout << ?\nComputing sum with 7 << std::max(1,nworkers/2)
<< 7 workers, default static scheduling\n”;
pfr.parallel_reduce (sum, 0.0, OL, SIZE,
bodyF, reduceF, std::max(l,nworkers/2));
std :: cout << "Sum = 7 << sum << 7\n\n”;

[](double& sum, const double elem) { sum += elem; };
[&A](const long j, double& sum) { sum += A[j]; };

~——

double sum = 0.0;
std :: cout << ”Computing sum with ” << nworkers
<< 7 workers, static scheduling with interleaving 1000\n”;
pfr.parallel_reduce_static (sum, 0.0, 0, SIZE, 1, 1000,
bodyF, reduceF, nworkers);
std :: cout << "Sum = 7 << sum << 7\n\n”;

—~——

double sum = 0.0;
std :: cout << ”Computing sum with 7 << nworkers—1
<< 7 workers, dynamic scheduling chunk=1000\n";
pfr.parallel_reduce (sum, 0.0, 0, SIZE, 1, 1000,
bodyF, reduceF, nworkers);
std :: cout << "Sum = 7 << sum << ”\n\n”;

}
delete [] A;
return 0;

}

in this simple test, we used a parallel-for for initialising the array A, and 3
parallel_reduce calls for computing the final sum (the reduction variable)
using the default static scheduling, the static scheduling with interleaving and
the dynamic scheduling, respectively.

4.2.3 ParallelForPipeReduce

The ParallelForPipeReduce uses a different skeleton implementation of
the ParallelForReduce pattern. The ParallelForPipeReduce com-
putes a map function and a sequential reduce function in a pipeline fashion.
This pattern is useful in cases in which the reduce function has to be com-
puted sequentially, for example because there are concurrent write accesses in

49

some memory locations (so they have to be serialised using a lock). In these
cases, the typical solution is to execute the map part (for example using a
parallel-for) and then when the map is completed, execute the reduce part se-
quentially and this may be expensive because a full barrier (between the map
and the reduce) is required. The ParallelForPipeReduce pattern allows
execution of the map and reduce part in pipeline without any barriers.

The ParallelForPipeReduce pattern is more complex to use than the
ParallelForReduce pattern because it requires to explicitly send the tasks to
the reduce stage inside the body of the map function. The ParallelForPipeReduce
chass defined in the parallel_for.hpp file provides only 2 parallel-for meth-
ods:

parallel_for_idx(first, last,step,grain,
mapF, nworkers);
mapF =F (const long begin,const long end,const int thid,
ff_buffernode& node);

parallel_reduce_idx (first, last, step,grain,
mapF, reduceF, nworkers);
mapF =F (const long begin,const long end,const int thid,
ff_buffernode& node);
reduceF =R (T& var);

As an example, let’s consider the same simple case implemented in the pre-
vious section, i.e. the computation of the sum of array’s elements:

1 /o soskokokoskok sk ok ok ok sk ok skok ok sk ok sk ok ok kR ok Rk ok sk /

2 /% skxkxkxk arraysum2.cpp kkxkx ok /

3

4 #include <ff/parallel_for .hpp>

5 using namespace ff;

6 const size_t SIZE= 1<<20;

7 int main(int argc, char % argv([]) {
8 assert (argc > 1);

9 int nworkers = atoi(argv([1l]);

10 // creates the array

11 double *A = new double [SIZE |;

12 ParallelForPipeReduce <doublex> pfpipe(nworkers ,true);
13 // init

14 pfpipe.parallel_for_idx (0,SIZE,1,0,

15 [&A] (const long start ,const long stop,

16 const int thid, ff_buffernode &) {

17 for (long j=start;j<stop;++j) A[j] = j*1.0;

18 1)

19 double sum = 0.0;

20 auto mapF = [&A](const long start ,const long stop,

21 const int thid, ff_buffernode &node) {

22 // mneeded to avoid sending spurious lsum values to the reduce stage
23 if (start==stop) return;

24 double *lsum=new double(0.0); // allocate a task to send

25 for (long i=start;i<stop;++1i) =*lsum 4= A[i];

26 node.put(lsum); // sending the partial sum to the next reduce stage
27}

28 auto reduceF = [&sum](double xlsum) { sum += x*lsum; delete lsum; };

29 std :: cout << ”Computing sum with ” << nworkers

30 << ” workers, using the ParallelForPipeReduce and default sched.\n”;
31 pfpipe.parallel_.reduce_idx (0, SIZE, 1, 0, mapF, reduceF);

32 std::cout << "Sum = 7 << sum << ”\n\n”;

33 delete [] A;

34 return 0;

35 }

50

© OO UE WN -

4.2.4 ff Map

The FastFlow map parallel pattern is implemented as an £f_node_t abstrac-
tion and a ParallelForReduce pattern. The idea is that, the map pat-
tern is just an interface to a parallel-for on multi-core platforms, while it pro-
vides a simple abstraction for targeting multi-GPGPUs (both OpenCL and
CUDA) and, in the future versions, FPGAs on many-core platforms. The
ff_Map<S,T> is a template class accepting three template parameters: the
first two are the type of the input-output task (i.e. the template parameter of
the ££_node_t<IN,OUT> class); the second one (optional) is the tipe of the
ParallelForReduce<T> class.

Since the ff_map pattern is an £f_node derived object, it may be used as
a pipeline stage and as a farm worker.

/* >k 3k sk >k sk 3k ok >k sk sk >k sk sk ok sk sk ok sk sk ok >k sk sk >k sk k ok */
/#* skxkkxkx% hello_map.cpp #skx*x %/

#include <ff/parallel_for .hpp>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
#include <ff/map.hpp>
using namespace ff;
const long SIZE = 100;
typedef std:: pair<std:: vector<long>,std:: vector<long> > fftask_t;
struct mapWorker: ff_-Map<fftask_t> {
fftask_t xsvec(fftask_t=*) {
fftask_t sxtask = new fftask_t;
task—>first .resize (SIZE);
task—>second . resize (SIZE) ;
const int myid = get_my_id () ;
ff_Map<fftask_t >::parallel_for (0,SIZE,[myid,&task](const long i) {
task—>first .operator [] (i) i + myid;
task—>second .operator [] (i) SIZE—i;
},3);
ff_send_-out (task);
return EOS;

}
}s
struct mapStage: ff_Map<fftask_t> {
mapStage () : ff_Map<fftask_t >(ff_-realNumCores ()) {}
fftask_t xsvc(fftask_-t =xtask) {
// this is the parallel_for provided by the ff_Map class
ff_Map<fftask_t >::parallel_for (0,SIZE,[& task](const long i) {
task—>first .operator [] (i) += task—>second.operator [](i);
s
for(size_t 1=0;i<SIZE;++1i)
std :: cout << task—>first .operator[](i) << 7 7;
std ::cout << ”\n”;
return GO.ON;

int main() {
std :: vector<std :: unique_ptr<ff_node> > W;
W. push_back (make_unique<mapWorker>()) ;
W. push_back (make_unique<mapWorker>()) ;

ff_Farm<task_t> farm(std :: move(W));

mapStage stage;

ff_Pipe<task_t> pipe(farm, stage);

if (pipe.run_and-wait-end () <0)
error ("running pipe”);

return 0;

o1

in the above test, we have a pipeline of two stage, the first stage is a task-farm
having two workers defined as map, the second stage is a map. The farm’s
workers initialise and generate in the output stream pairs of vector, the single
pair of vector is summed in the second stage.

Why use the £f_Map instead of using directly a ParallelFor in a se-
quential £f_node? The big difference is in the fact that in case of ££_Map the
run-time knows that the £f_node is internally parallel whereas if the parallel-
for is used inside the svc method of a sequential £f_node this information
is completely transparent to the FastFlow run-time thus not allowing any kind
of optimisation (as for example, removing the scheduler or applying a better
thread-to-core mapping).

4.3 Examples

4.3.1 Matrix multiplication

Let’s consider the standard ijk matrix multiplication algorithm. We have three
nested loops that can be potentially parallelised (note that the internal k-loop
is not a plain parallel for loop). In the following code we apply the ParallelFor
pattern to the outermost loop (i-loop).

[k sk sk ok ok skok sk ok ok ok ok sk ok ok ok ok Rk ok sk ok ok /
/% kkkkkkx matmul. cpp wkskokk */

#include <assert.h>

#include <math.h>

#include <stdio.h>

7 #include <stdlib .h>

8 #include <string.h>

9 #include <sys/time.h>

10

11 #include <ff/parallel_for .hpp>
12 using namespace ff;

DU W N =

13 int PFWORKERS =1; // parallel_for parallelism degree
14 int PFGRAIN =0; // default static scheduling of iterations
15

16 void random_.init (long M, long N, long P, double %A, double xB) { }
17

18 // triple nested loop (ijk) implementation

19 void seqMatMult(long m, long n, long p,

20 const doublex A, const long AN,
21 const doublex B, const long BN,
22 doublex C, const long CN) {

23

24 for (long i = 0; i < m; i++4)

25 for (long j = 0; j < n; j++) {

26 Cl[i*CN+j] = 0.0;

27 for (long k = 0; k < p; k++)

28 C[i*CN+j] += A[i*AN+k]|+*B[k*BN+j |;
29 }

30 }

31 void PFMatMultl(long m, long n, long p,

32 const doublex A, const long AN,
33 const doublex B, const long BN,
34 doublex C, const long CN) {

35

36 ParallelFor pf(PFWORKERS) ;

37 pf.parallel_for (0,m,[A,B,CN,AN,BN,p,n,&C](const long i) {

92

© 00Utk WN -

for (long j = 0; j < n; j++) {
C[i*CNt+j] = 0.0;
for (long k = 0; k < p; k++) {
C[i*CN+j] += A[i*AN+k]*B[k*BN+j |;
}
}); // it uses all PFWORKERS
}
int main(int argc, charx argv[]) {

if (arge < 4) {

printf(”\n\tuse: %s M N P pfworkers:chunksize [check=0]\n”, argv
[0]);

printf (”\t A is M by P\n”);

printf(7\t B is P by N\n”);

printf(”\t check!=0 executes also the sequential ijk loops for
checking the result\n\n”);

return —1;

}

long M parse_arg (argv [1]) ;
long N parse_arg (argv [2]);
long P = parse_arg(argv [3]);
if (arge >= 5) {
std :: string pfarg(argv[4]);
int n = pfarg.find_first_of (7:7);
if (n>0) {
PFWORKERS = atoi(pfarg.substr (0,n).c_str
PFGRAIN = atoi(pfarg.substr(n+1).c_str
} else PFWORKERS = atoi(argv[5]);

D)) 8
)5

if (argec >= 6) check = (atoi(argv[5])?true: false);

const double *A = (doublex)malloc (M«Pxsizeof(double));
const double *B = (doublex)malloc (PxNk«sizeof(double)) ;
assert (A); assert (B);

random_init (M, N, P, const_cast<doublex>(A), const_cast<doublex>(B))
double *C = (doublex)malloc (MxNxsizeof (double)) ;
PFMatMultI(M, N, P, A, P, B, N, C);

free ((void*)A); free ((voidx*)B); free(C);
return 0;

4.3.2 Dot product

The ”dot” product is a simple example of a map pattern combined with a reduc-
tion operation. The map is the initial pair wise multiplication of vector elements,
and the reduction is the summation of the results of that multiplication.

More formally, given two arrays A and B each with n elements, the dot
product A x B is the resulting scalar given by Z?:_Ol Ali] x BJi].

[k sk ok ok ok ok ok koK Rk kKRR kR R Rk ok x [
/* kxkkkxk dotprod.cpp kkkxk k/

#include <iostream>

#include <iomanip>

#include <ff/parallel_for .hpp>

using namespace ff;

int main(int argc, char % argv[]) {
if (arge < 5) {

93

std::cerr << 7use: ” << argv|[0]
<< 7 ntimes size pfworkers G\n”;
std:: cerr << 7 example:\n 7 << argv[0] << ” 2 100000 8 0\n\n”;
return —1;
const double INITIAL_.VALUE = 1.0;
int NTIMES = atoi(argv[1l]);
long arraySize = atol(argv[2]);
int nworkers = atoi(argv[3]);
long chunk = atol (argv[4]);
assert (nworkers>0); assert (arraySize >0);
// creates the array
double *A = new double[arraySize |;
double *B = new double[arraySize |;
ParallelForReduce<double> pfr (nworkers ,true);
// initialize the arrays A and B
pfr.parallel_for (0,arraySize ,1, chunk, [&A,&B](const long j){
Aljl=j=*3.14; B[j]=2.1%j;
// final reduce function
auto Fsum = [](double& v, const double& elem) { v += elem; };
double sum; // reduction variable
for (int z=0;z<NTIMES;++z) { // repeats the computation NTIMES
sum = INITIAL_VALUE;
pfr.parallel_reduce (sum, 0.0, 0, arraySize,l, chunk,
[&A,&B](const long i, double& sum) { sum += A[i]*B[i]; },
Fsum) ;
}
std :: cout << ”"Result = 7 << std::setprecision (10) << sum << "\n”;
delete [] A; delete []| B;
return 0;
}

4.3.3 Mandelbrot fractal
A Mandelbrot set M, is defined by the set of complex numbers ¢ such that:

M = {c: |My(c)| < 00,Vk € N}

where

{ M()(C) =0
Myi1(c) = My(c)®> + ¢

A point ¢ belongs to the Mandelbrot set if and only if:
|Mg(c)| <=2,Vk e N

The following program, which uses the ParallelForPipeReduce pattern for
both computing the set line by line (Map part) and for displaying the line just
computed (Reduce part), displays the Mandelbrot set in a X window. The result
is shown in Fig

/* 3k 3k sk >k >k sk sk >k sk sk >k sk sk ok >k sk 5k >k sk sk ok >k k ok */
/#* skxkskkkk mandel.cpp xkkkx ok /

#include <iostream>

o4

5
6
7

Use mouse wheel ko zoom. Press and hold left mouse button to scroll.

Figure 4.1: Mandelbrot set: size=800, niterations=400

#include <cstdio>

#include <cmath>

#include <cassert>

#include <ff/utils.hpp>

#define HAS_CXX11_VARIADIC_.TEMPLATES 1
#include <ff/parallel_for .hpp>
#include 7 1ib /marX2.h”

const int DIM=800; // default dimension

const int ITERATION=1024; // default iteration
const double init-a=-2.125, init_-b=—-1.5, range=3.0;
using namespace ff;

// task type

struct ostream-_t
ostream_t (const int dim):M(dim),line(—1) {}
std :: vector<unsigned char> M;
int line;

int main(int argc, char sxxargv) {
int dim = DIM, niter = ITERATION, retries=1, nworkers, chunk=0;
bool scheduler = true;
if (arge<3) {
printf(”\nUsage: %s <nworkers> <size> [niterations=1024]”
” [retries=1] [chunk=0] [0]|1]\n\n\n”, argv[0]);
return —1;

}

nworkers = atoi(argv[1l]);

dim = atoi(argv[2]);

if (argc>=4) niter = atoi(argv[3]);

if (argc>=5) retries = atoi(argv[4]);

if (argc>=6) chunk = atoi(argv[5]);

if (argc>=7) scheduler = atoi(argv[6]);

double step = range/((double) dim);

99

39 double runs|[retries];

40

41 SetupXWindows (dim ,dim,1 ,NULL,” ParallelForPipeReduce Mandelbrot”);
42

43 ParallelForPipeReduce<ostream_t*> pfr(nworkers,true);
44

45 if (scheduler) pfr.disableScheduler (false);

46 // map lambda

47 auto Map = [&](const long start, const long stop,

48 const int thid, ff_buffernode &node) {
49 for (int i=start;i<stop;i++) {

50 double im=init_-b+4(step=*i);

51 ostream_t xtask=mew ostream_t (dim);

52 for (int j=0;j<dim;j++) {

53 double a=init_a+stepx*j;

54 double b=im;

55 const double cr = a;

56 int k=0;

57 for (; k<niter;k++) {

58 const double a2=axa;

59 const double b2=bxb;

60 if ((a2+4b2)>4.0) break;

61 b=2%a*xb+im ;

62 a=a2—b2+cr;

63

64 task—>M][j]= (unsigned char) 255—((k*255/niter));

65

66 task—>line = 1ij;

67 node . put (task);

68}

69 e

70 // reduce lambda

71 auto Reduce = [&](ostream_t xtask)

72 ShowLine (task—>M. data () ,task—>M. size () ,task—>line);
73 delete task;

74 It

75 double avg=0.0, var=0.0;

76 for (int r=0;r<retries;r++) {

7 ffTime (START_-TIME) ;
78 pfr.parallel_reduce-idx (0,dim,1,chunk,Map, Reduce) ;
79 ffTime (STOP_TIME) ;

80

81 avg += runs[r] = {fTime (GET-TIME) ;

82 std::cout << "Run [” << r << 7] done, time = 7 << runs[r] << "\n”;
83 }

84 avg = avg / (double) retries;

85 for (int r=0;r<retries;r++)

86 var += (runs[r] — avg) % (runs[r] — avg);

87 var /= retries;

88 std :: cout << ”The average time (ms) on ” << retries
89 << 7 experiments is 7 << avg

90 << 7 Std. Dev. is 7 << sqrt(var) << 7\n”;

91

92 std :: cout << ”Press a button to close the windows\n”;
93 getchar () ;

94 CloseXWindows () ;

95 return 0;

96 }

4.3.4 Sobel filter

Let’s consider a very simple usage example in which the £f_map is used as
pipeline stage for computing the Sobel filter (see Fig. on a stream of input
images. The first stage reads image from disk, allocates memory and then sends
a task to the second stage (the Map one) which computes the Sobel filter in

96

© 00U WN -

ng Tow x - Leaning T

«est @D O OH Y «as t4@D O OHI

Figure 4.2: Sobel filter

parallel using a parallel-for. Finally the image is written into the local disk. In
the following code we used OpenCVEl for reading and writing images and for

converting them to grayscale.

/* 3k 3k 3k 3k 3k ok >k ok 3k 3k sk 3k sk sk >k 3k 3k 3k 3k 3k sk ok ok ok ok */

/% xkkxkkx ffsobel.cpp sxksk x/
#include<iostream>

#include<cmath>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#define HAS_CXX11_VARIADIC.TEMPLATES 1
#include <ff/pipeline.hpp>

#include <ff/map.hpp>

using namespace ff;

using namespace cv;

const int MAPWORKERS=2;

/* my task x/

struct Task {

Task (uchar *src, uchar *dst, long rows, long cols, const std::

&name) :
src(src) ,dst(dst) ,rows(rows), cols(cols), name(name) {};
uchar xsrc, *xdst;
long rows, cols;
const std::string name;
}s
/* ———— utility function ————— x/
template<typename T>

T xMat2uchar(cv::Mat &in) {
T *out = mew T[in.rows x in.cols];

string

for (int i = 0; i < in.rows; ++i)
for (int j = 0; j < in.cols; ++j)
out[i * (in.cols) 4+ j] = in.at<T>(i, j);
return out;
}
charx getOption(char #xbegin, char xxend, const std::string &option) {

char #xitr = std::find (begin, end, option);
if (itr != end && ++itr != end) return =xitr;
return nullptr;

:gﬁdefine XY2I(Y,X,COLS) (((Y) * (COLS)) + (X))

IProject web site: http://www.opencv.org

o7

/* */

// returns the gradient in the x direction

static inline long xGradient(uchar * image, long cols, long x, long y)
return image [XY2I(y—1, x—1, cols)] +

2ximage [XY2I(y, x—1, cols)] +
image [XY2I(y+1, x—1, cols)] —
image [XY2I(y—1, x+1, cols)] —
2ximage [XY2I(y, x+1, cols)] —
image [XY2I(y+1, x+1, cols)];

}

// returns the gradient in the y direction

static inline long yGradient(uchar * image, long cols, long x, long y)
return image [XY2I(y—1, x—1, cols)] +
2ximage [XY2I(y—1, x, cols)]
image [XY2I(y—1, x+1, cols)]
image [XY2I(y+1, x—1, cols)]
2ximage [XY2I(y+1, x, cols)] —
image [XY2I(y+1, x+1, cols)]

I+

s

// 1lst stage
struct Read: ff_node_t<Task> {
Read (char xximages, const long num_images):
images ((const charx*x)images) ,num_images (num_images) {}

Task *svc(Task *) {
for (long i=0; i<num_images; ++i) {
const std::string &filepath (images[i]);
std::string filename;

// get only the filename

int n=filepath.find_last_of (”/”);

if (n>0) filename = filepath.substr(n+1);
else filename = filepath;

Mat *src = new Mat;
xsrc = imread(filepath , CV.LOADIMAGE_-GRAYSCALE) ;
if (!src—>data) {
error ("reading image file %s, going on....\n”,
filepath.c_str());
delete src;
continue;

uchar * dst = new uchar[src—>rows x src—>cols];
for (long y = 0; y < src—>rows; y++)
for (long x = 0; x < src—>cols; x++) {
dst [y * src—>cols + x| = 0;
¥
Task *t=new Task(Mat2uchar<uchar >(xsrc) ,dst,src—>rows,src—>cols,
filename) ;
ff_send_-out (t); // sends the task t to the next stage

0
0

return EOS; // computation completed

const char *ximages;
const long num-images;

b
// 2nd stage
struct SobelStage: ff_Map<Task> {
// sets the maximum n. of worker for the Map
// spinWait is set to true
// the scheduler is disabled by default
int nw;
SobelStage (int mapworkers)
:ff_Map<Task>(mapworkers ,true) {nw=mapworkers;}

Task *svc(Task xtask) {

uchar * src = task—>src, * dst = task—>dst;
long cols = task—>cols;

98

119 };

ff_Map<Task >:: parallel_for (1,task—>rows —1,[src, cols,&dst](const

y) A
for (long x = 1; < cols — 1; x++){

const long gx xGradient (src, cols, x, y);
const long gy yGradient (src, cols, x, y);
// approximation of sqrt(gx*gx+gy*gy)
long sum = abs(gx) + abs(gy);
if (sum > 255) sum = 255;

I =

else if (sum < 0) sum = 0;
dst [y*cols+x] = sum;
}
b
const std::string &outfile = ”./out/” 4+ task—>name;

imwrite(outfile , cv::Mat(task—>rows, task—>cols, CV.8U, dst, cv:

:: AUTOSTEP)) ;
delete task—>src; delete [] task—>dst; delete task;
return GO.ON;
+s

121 int main(int argc, char xargv|[]) {

if (arge < 2) {

std :: cerr << ”\nuse: 7 << argv[0]
<< 7 [-m <Wrks=2>] <image—file > [image—file]\n”;
std :: cerr << 7 Wrks2 is the n. of map’s workers\n\n”;
return —1;

¥

int start = 1;

int Wrks = MAPWORKERS;

char sm = getOption(argv, argv4argc, ”"-m’);

if (m) { Wrks = atoi(m); start+=2; argc—=2; }

long num_images = argc —1;

assert (num_images >= 1);

Read reader(&argv[start], num_images);
SobelStage sobel (Wrks) ;
ff_Pipe<> pipe(reader, sobel);
if (pipe.run_and_wait_end ()<0) {
error ("running pipeline\n”);
return —1;

return 0;

99

long

: Mat

Chapter 5

Data-flow parallelism

The data-flow programming model is a general approach to parallelization based
upon data dependencies among a program’s operations. Its theoretical and
methodological value is quite fundamental in parallel processing.

The computations is expressed by the data-flow graph, i.e. a DAG whose
nodes are instructions and arcs are pure data dependencies.

If instead of simple instructions, portions of code (sets of instructions or
functions) are used as graph’s nodes, then it is called the macro data-flow model
(MDF). The resulting MDF program is therefore represented as a graph whose
nodes are computational kernels and arcs read-after-write dependencies. It is
worth noting that, the data-flow programming model is able to work both on
stream of values and on a single value. For this reason, it is considered somehow
a primitive model of computation.

5.1 The ff mdf data-flow skeleton

The mdf skeleton in FastFlow called ff_mdf implements the macro data-flow
parallel pattern. The run-time of the FastFlow mdf pattern is responsible for
scheduling fireable instructions (i.e. those with all input data dependencies
ready) and managing data dependencies.

Currently, the internal implementation of the FastFlow mdf pattern is a
2-stage pipeline, the first stage is responsible for dynamically generating the
graph instructions by executing the users’ code, and the second stage (a task-
farm with feedback channel) is responsible for managing task dependencies and
task scheduling. In the next version of FastFlow, other different implementations
using less resources will be provided to the users.

60

NO Ut W

Figure 5.1: Data-flow dependency graph

Jf-mdf run-time components:

At the general level, it is possible to identify the following main parts of the FastFlow
mdf run-time:

e Dynamic construction of the task graph (DAG): in complex program the task
graph could be very large; its generation time can affect significantly the compu-
tation time, and the memory required to store the entire graph may be extremely
large. To overcome these issues, a solution is to generate the graph during the
computation of tasks (and possibly overlap task generation and task computa-
tion), such that only a window of the graph is maintained in memory.

e Handling inter-task dependencies: Handling task dependencies, i.e. update de-
pendencies after the completion of previously scheduled tasks and determining
ready (fireable) tasks to be executed.

e Scheduling of fireable tasks: a task having all input dependencies ready may be
selected by the interpreter for execution. This selection needs to be performed in
a smart way in order to optimise cache locality, particular important on shared-
cache multi-core, and at the same time trying to maintain a good load balancing
among worker threads.

Creating graph tasks

In order to show how to use the mdf pattern, let’s take a look at the following
simple case. Suppose you have the following sequential code:
const size_t SIZE = 1<<20;

long *A,*xB,xC,*xD;
allocate (A,B,C,D, size);

sum2(A,B,SIZE); // executes A = A + B;
sum2(C,B,SIZE); // executes C = C + B;
sum2(D,B,SIZE); // executes D =D + B;
sum3(D,A,C,SIZE);// executes D = A 4+ C + D;

here we can identify 4 macro instructions that can be executed concurrently
with the FastFlow mdf pattern by specifying, for each instruction, which are
the input or output parameters of the function that has to be executed (in this
case sum2 and sum3). For example, the first instruction in the code above
has two input parameters (A and B) and one output parameter (C') that have
to be passed to the function sum2. A parameter is provided to the run-time

61

as param_info type, which has two fields, one is the pointer of the input or
output of the ”"real” parameter and the second is the ” direction” which can be
INPUT,OUTPUT or VALUE (this last one is used mainly for those parameters
that can be evaluated as a single value, do not constitute a real dependency).
The function and the parameters are passed to the run-time using the AddTask

method of the mdf class. The resulting code is the following one:

1 /% soskoroskoskokok s oskokok ok okok kR ok kR Rk ok k[

2 /* skxkkkkk hello_mdf.cpp #skxx %/

3

4/« L

5 ' / \

6 x |

7 * A=A+ B; // sum?2 A B C D
8 % C=C+ B; // sum2 | | | |
9 x D =D + B; // sum?2 \ / \ / \ /
10 * D=A+4+ C + D; // sum3 + + +
11 = A C D
12 s | | |
13« Voo /

4 « 4+ —

15 D

16 =

17 #include <ff/mdf.hpp>

18 using namespace ff;

19 const size_t SIZE = 1<<8; //1<<20;

20 void sum2(long X, long *Y, const long size);

21 void sum3(long X, long =Y, long xZ, const long size);

template<typename T>
struct Parameters {
long *A,*B,*C,*D;
Tx mdf;

i
void taskGen(Parameters<ff_mdf > *const P){

28 long *A = P—>A; long xB = P-—>B;

29 long *C = P—>C; long xD = P—>D;

30 auto mdf = P—>mdf;

31

32 std :: vector<param_info> Param;

33 // A=A + B;

34

35 const param-info _1={(uintptr_t)A,INPUT}; // 1st param
36 const param_info _2={(uintptr_t)B,INPUT}; // 2nd param
37 const param_info _3={(uintptr_t)A,OUTPUT}; // 3rd param
38 // pack the parameters in one single vector

39 Param.push_back (-1); Param.push_back(-2);

40 Param. push_back (-3);

41 mdf—>AddTask (Param, sum2, A,B,SIZE); // create on task
2}

43 // C=C + B;

44

45 Param. clear () ;

46 const param_info _1={(uintptr_t)C,INPUT};

47 const param_info _2={(uintptr_t)B,INPUT};

48 const param_info _3={(uintptr_t)C,OUTPUT};

49 Param. push_back (-1); Param.push_back(-2); Param.push_back(-3);
50 mdf—>AddTask (Param, sum2, C,B,SIZE);

51 }

52 // D=D + B;

53 {

54 Param. clear () ;

55 const param_info _1={(uintptr_t)D,INPUT};

56 const param_info _2={(uintptr_t)B,INPUT};

57 const param_info _3={(uintptr_t)D,OUTPUT};

58 Param. push_back (-1); Param.push_back(-2); Param.push_back(-3);
59 mdf—>AddTask (Param, sum2, D,B,SIZE);

62

© 00O U W -

}

/DR WASCLR G

{
Param. clear () ;
const param_info _1={(uintptr_t)A,INPUT};
const param_info _2={(uintptr_t)C,INPUT};
const param-info _3={(uintptr_t)D,INPUT};
const param_info _4={(uintptr_t)D,OUTPUT};
Param. push_back (-1); Param.push_back(-2);
Param. push_back(-3); Param.push_back(-4);
mdf—>AddTask (Param, sum3, D,A,C,SIZE);

}

int main() {

long *A= new long|[SIZE], %B= new long|[SIZE];
long #*C= new long[SIZE], *D= new long|[SIZE];
for(size_t i=0;i<SIZE;++i) {
Ali]l=i; Bli]=i+1; C[i]=i+2; D[i]=i+3;

// creates the mdf object passing the task generetor function
Parameters<ff_mdf > P;
ff_mdf dag(taskGen, &P);
P.A=A,P.B=B,P.C=C,P.D=D,P.mdf=&dag ;
if (dag.run_and_wait_end () <0) error(”running dag”);
return 0;

¥

5.2 Examples

In this section we propose two numerical application: the block-based matrix
multiplication and the block-based Cholesky factorisation.

5.2.1 Block-based matrix multiplication

As a more complex usage example of the FastFlow mdf pattern we consider here
the block-based matrix multiplication algorithm. The algorithm is sketched in

Fig.
This version computes in parallel the C;; blocks doing p-passes. A more
cache-friendly implementation can be implemented.

[sk ok sk ok ok sk ok sk ok s ok ok ok ok sk ok ok K koK R K R Sk ok Kok Rk R ok ok /
/#* skxkkxkk blk_matmul_mdf.cpp sxx*k x/

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <sys/time.h>

#include <ff/mdf.hpp>
#include <ff/parallel_for .hpp>

using namespace ff;

const double THRESHOLD = 0.001;

bool PFSPINWAIT=false ; // enable/disable spinWait

int PFWORKERS=1; // parallel_for parallelism degree

int PFGRAIN =0; // default static scheduling of iterations
void random_init (long M, long N, long P, double %A, double xB);

63

P N
B S EE— < >
All A12 A13 Al4 Al Bna B12 B13 C11 C12 C13
M X =
A21 A22 A23 A24 B21 B22 B23 c21 c22 c23
P
matrix A (MxP i
ix A (MxP) B31 B32 B33 matrix C (MxN)

Algorithm:
- b is the block size
- Pblocks = P/b;Mblocks = M/b; Bal | B42 | B43
- Nblocks = N/b; \

- fill out the C matrix with zeros

- for k k<Pblocks
for j j<Mblocks
for i i<Nblocks

Cij = Cij + Aij * BKj

Figure 5.2: Block-based matmul algorithm

matrix B (PxN)

long parse_arg (const char kxstring);

void printarray (const double xA,

// executes the standa
// using the ParallelF

void blockMM (long b, const double x*A,

long m,

long n,

rd ijk algorithm on a
or pattern. This

const double xB,

double xC,

const long BN,

const long CN)

i

{

ParallelFor pf(PFWORKERS, PFSPINWAIT) ;
pf.disableScheduler (true);

pf.parallel_for (0,b,1,PFGRAIN, [A,B,AN,BN,CN,b,&C](const long
i+t {

for (long

j = 0;

j < b;

// removes the

for (long k = 0; k < b;
Cli*CN+j] += A[i*AN+k]*B[k*BN+j |;

}
Hs

// put the block pointed by C to zero

void zerosBlock (long b
for (long i = 0; i

for (long j =
Cli*CN+j]

, double x*C,

< b; it+4)
0; j < b; j++)

0.0;

// taskGen’s parameters data type

template<typename T>
struct Parameters {

Parameters (const double x*A,

C)

const double A, xB;

double *C;
long AN,BN,CN;
long b, m, n, p;
T* mdf;

}s

const double xB, double xC):A(A) ,B(B),C(

// stride
// size

// Block—based algorithm:
void taskGen(Parameters<ff_mdf > sconst P){
P—>A, xB = P—>B;

const double xA =
double *C =

P—>C;

long m=P—>m, n=P—>n, p=P—>p,b=P—>b;
long AN=P—>AN, BN=P—>BN, CN=P—>CN;

long mblocks = m/b,

nblocks

n/b, pblocks

64

k++)

scheduler

const long CN) {

p/b;

long N);
single block
s the macro
const long AN,

instruction.

thread

i)

{

auto mdf = P—>mdf;

// set C blocks to zero
for (long i=0; i<mblocks; ++i) {
for (long j=0; j<nblocks; ++j)
double *Cij = & C[bx(i*xCN+j) |;
std :: vector<param-info> Param;
const param_info _1={(uintptr_t)Cij, INPUT};
const param_info _2={(uintptr_t)Cij, OUTPUT};
Param.push_back (-1); Param.push_back(-2);
// create a task
mdf—>AddTask (Param, zerosBlock, b, Cij, CN);

}

for (long k=0; k<pblocks; ++k) {
for (long i=0; i<mblocks; ++i) {
for (long j=0; j<nblocks; ++j) {

const double xAik &A[bx*(i*AN + k)];

const double =*Bkj &B[bx*(k+*BN + j)];

double *Cij = &C[bx(i*CN+j)];

std :: vector<param-_-info> Param;

const param_info _1={(uintptr_t)Aik, INPUT};

const param_info _2={(uintptr_t)Bkj, INPUT};

const param_info _3={(uintptr_-t)Cij, OUTPUT};

Param . push_back (-1); Param.push_back(-2); Param.
push_back (-3);

// create a task

mdf—>AddTask (Param, blockMM, b, Aik, AN, Bkj, BN, Cij,
CN) ;

int main(int argc, charx argv[]) {

if (arge < 5)
printf(”\n\tuse: %s <M> <N> <P> <blocksize >’
printf’’ [nworkers] [pfworkers:pfgrain]\n”, argv[0]);
printf(”\t <—> required argument, [—] optional argument\n”);
printf(”\t A is M by P\n”);
printf(”\t B is P by N\n”);
printf(”\t nworkers is the n. of workers of the mdf pattern\n”);
printf(”\t pfworkers is the n. of workers of the ParallelFor

pattern\n”);

printf(”\t pfgrain is the ParallelFor grain size\n”);
printf(”\t NOTE: the blocksize must evenly divide M, N and P.\n”

)
return —1;

int nw = —1;

long M = parse_arg (argv[1l]);

long N = parse_arg(argv[2]);

long P = parse_arg(argv[3]);

long b = parse_arg(argv[4]);

if (argec >= 6) nw = atoi(argv[5]);

if (arge >= 7) {
std::string pfarg(argv[6]);
int n = pfarg.find_first_of(”:7);

if (n>0) {
PFWORKERS = atoi(pfarg.substr (0,n).c_str());
PFGRAIN = atoi(pfarg.substr(n+1).c_str());

} else PFWORKERS = atoi(argv[6]) ;
const double *A = (doublex)malloc (M«xPxsizeof(double)) ;
const double *B = (doublex)malloc(PxNxsizeof(double)) ;
assert (A); assert (B);

random_init (M, N, P, const_cast<doublex>(A), const_cast<doublex>(B))

65

double *C = (doublex)malloc (MxNxsizeof (double)) ;

Parameters<ff_mdf > Param(A,B,C);

ff_mdf mdf(taskGen, &Param,32,(nw<=07ff_realNumCores ():nw));
Param .nm=M, Param . n=N, Param . p=P, Param . b=b;

Param .AN=P, Param .BN=N, Param . CN=N;

Param . mdf=&mdf;

printf(” Executing %—40s” , ”Block—based MM’) ;

ffTime (START_TIME) ;

mdf. run_and_wait_end () ;

ffTime (STOP_TIME) ;

printf(” Done in %11.6f secs.\n”, (ffTime(GET.-TIME)/1000.0));

free ((void*)A); free ((void*)B); free(C);
return 0;

5.2.2 Block-based Cholesky factorisation
To be added

66

Chapter 6

Task parallelism

TBA

ff-taskf

67

Chapter 7

Targeting GPUs

TBA

68

Chapter 8

Targeting Distributed
Systems

TBA

69

Bibliography

1]

Marco Aldinucci, Andrea Bracciali, Pietro Lio, Anil Sorathiya, and Mas-
simo Torquati. StochKit-FF: Efficient systems biology on multicore ar-
chitectures. In M. R. Guarracino, F. Vivien, J. L. Traff, M. Can-
nataro, M. Danelutto, A. Hast, F. Perla, A. Kniipfer, B. Di Martino,
and M. Alexander, editors, Euro-Par 2010 Workshops, Proc. of the 1st
Workshop on High Performance Bioinformatics and Biomedicine (HiBB),
volume 6586 of LNCS, pages 167-175, Ischia, Italy, aug 2011. Springer.

Marco Aldinucci, Marco Danelutto, Lorenzo Anardu, Massimo Torquati,
and Peter Kilpatrick. Parallel patterns + macro data flow for multi-core
programming. In Proc. of Intl. Euromicro PDP 2012: Parallel Distributed
and network-based Processing, pages 27-36, Garching, Germany, feb 2012.
IEEE.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, and Massimo Torquati. Accelerating sequential programs us-
ing FastFlow and self-offloading. Technical Report TR-10-03, Universita di
Pisa, Dipartimento di Informatica, Italy, feb 2010.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, and Massimo Torquati. Accelerating code on multi-cores with
fastflow. In E. Jeannot, R. Namyst, and J. Roman, editors, Proc. of 17th
Intl. Euro-Par 2011 Parallel Processing, volume 6853 of LNCS, pages 170—
181, Bordeaux, France, August 2011. Springer.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. Fastflow: high-level and efficient streaming on multi-core. In
Sabri Pllana and Fatos Xhafa, editors, Programming Multi-core and Many-
core Computing Systems, Parallel and Distributed Computing, chapter 13.
Wiley, March 2014.

Marco Aldinucci, Marco Danelutto, Massimiliano Meneghin, Peter Kil-
patrick, and Massimo Torquati. Efficient streaming applications on multi-
core with FastFlow: the biosequence alignment test-bed. In Barbara Chap-
man, Frédéric Desprez, Gerhard R. Joubert, Alain Lichnewsky, Frans Pe-
ters, and Thierry Priol, editors, Parallel Computing: From Multicores and

70

[11]

GPU’s to Petascale (Proc. of PARCO 2009, Lyon, France), volume 19 of
Advances in Parallel Computing, pages 273-280, Lyon, France, 2010. IOS
press.

Marco Aldinucci, Massimiliano Meneghin, and Massimo Torquati. Efficient
Smith-Waterman on multi-core with fastflow. In Marco Danelutto, Tom
Gross, and Julien Bourgeois, editors, Proc. of Intl. Euromicro PDP 2010:
Parallel Distributed and network-based Processing, pages 195-199, Pisa,
Italy, feb 2010. IEEE.

Marco Aldinucci, Salvatore Ruggieri, and Massimo Torquati. Decision
tree building on multi-core using fastflow. Concurrency and Computation:
Practice and Experience, 26(3):800-820, March 2014.

Marco Aldinucci and Massimo Torquati. FastFlow website, 2009. http:
//mc—fastflow.sourceforge.net/l

Marco Aldinucci, Massimo Torquati, and Massimiliano Meneghin. Fast-
Flow: Efficient parallel streaming applications on multi-core. Technical
Report TR-09-12, Universita di Pisa, Dipartimento di Informatica, Italy,
sep 2009.

Marco Aldinucci, Massimo Torquati, Concetto Spampinato, Maurizio
Drocco, Claudia Misale, Cristina Calcagno, and Mario Coppo. Parallel
stochastic systems biology in the cloud. Briefings in Bioinformatics, June
2013.

Murray Cole. Algorithmic Skeletons: Structured Management of Paral-
lel Computations. Research Monographs in Par. and Distrib. Computing.
Pitman, 1989.

Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto
for skeletal parallel programming. Parallel Computing, 30(3):389-406, 2004.

Marco Danelutto. Distributed Systems: Paradigms and Models. SPM
cource note, Computer Science Department University of Pisa, 2013.

Marco Danelutto, Luca Deri, Daniele De Sensi, and Massimo Torquati.
Deep packet inspection on commodity hardware using fastflow. In Proc. of
PARCO 2013 Conference, Munich, Germany, Munich, Germany, 2013.

Marco Danelutto and Massimo Torquati. Structured parallel programming
with ”core” fastflow. In Formal Methods for Components and Objects: Tth
Intl. Symposium, FMCO 2008, Sophia-Antipolis, France, October 20 - 24,
2008, Revised Lectures, volume 8606 of LNCS, pages 28—74. Springer, 2014.

Horacio Gonzélez-Vélez and Mario Leyton. A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers. Softw.,
Pract. Ezper., 40(12):1135-1160, 2010.

71

http://mc-fastflow.sourceforge.net/
http://mc-fastflow.sourceforge.net/

[18] Claudia Misale, Giulio Ferrero, Massimo Torquati, and Marco Aldinucci.
Sequence alignment tools: one parallel pattern to rule them all? BioMed
Research International, 2014.

72

	Introduction
	Installation and program compilation
	Tests and examples

	Design principles
	Stream parallelism
	Stream parallel skeletons
	FastFlow abstractions
	ff_node
	ff_Pipe
	ff_minode and ff_monode
	ff_farm and ff_Farm

	Tasks scheduling
	Tasks ordering
	Feedback channels
	Mixing farms pipelines and feedbacks
	Software accelerators
	Examples
	Images filtering

	Data parallelism
	Data parallel skeletons
	FastFlow abstractions
	ParallelFor
	ParallelForReduce
	ParallelForPipeReduce
	ff_Map

	Examples
	Matrix multiplication
	Dot product
	Mandelbrot fractal
	Sobel filter

	Data-flow parallelism
	The ff_mdf data-flow skeleton
	Examples
	Block-based matrix multiplication
	Block-based Cholesky factorisation

	Task parallelism
	Targeting GPUs
	Targeting Distributed Systems

