Parallel Programming Using \textbf{FastFlow}

(Version September 2015)

Massimo Torquati
Computer Science Department, University of Pisa
torquati@di.unipi.it
Summary

1 Introduction 3
 1.1 Installation and program compilation 5
 1.1.1 Tests and examples 6

2 Design principles 7

3 Stream parallelism 10
 3.1 Stream parallel skeletons 10
 3.2 FastFlow abstractions 11
 3.2.1 ff_node 12
 3.2.2 ff_Pipe 15
 3.2.3 ff_minode and ff_monode 17
 3.2.4 ff_farm and ff_Farm 18
 3.3 Tasks scheduling 28
 3.4 Tasks ordering 25
 3.5 Feedback channels 27
 3.6 Mixing farms pipelines and feedbacks 28
 3.7 Software accelerators 28
 3.8 Examples 31
 3.8.1 Images filtering 32

4 Data parallelism 43
 4.1 Data parallel skeletons 44
 4.2 FastFlow abstractions 44
 4.2.1 ParallelFor 45
 4.2.2 ParallelForReduce 48
 4.2.3 ParallelForPipeReduce 49
 4.2.4 ff_Map 51
 4.3 Examples 52
 4.3.1 Matrix multiplication 52
 4.3.2 Dot product 53
 4.3.3 Mandelbrot fractal 54
 4.3.4 Sobel filter 56

5 Data-flow parallelism 60
5.1 The \textit{ff-mdf} data-flow skeleton \hfill 60
5.2 Examples \hfill 63
\hspace{1em} 5.2.1 Block-based matrix multiplication \hfill 63
\hspace{1em} 5.2.2 Block-based Cholesky factorisation \hfill 66

6 Task parallelism \hfill 67

7 Targeting GPUs \hfill 68

8 Targeting Distributed Systems \hfill 69
Chapter 1

Introduction

FastFlow is an open-source, structured parallel programming framework originally conceived to support highly efficient stream parallel computation while targeting shared memory multi-core. Its efficiency comes mainly from the optimised implementation of the base communication mechanisms and from its layered design. FastFlow provides the parallel applications programmer with a set of ready-to-use, parametric algorithmic skeletons modelling the most common parallelism exploitation patterns. The algorithmic skeletons provided by FastFlow may be freely nested to model more and more complex parallelism exploitation patterns.

FastFlow is an algorithmic skeleton programming framework developed and maintained by the parallel computing group at the Departments of Computer Science of the Universities of Pisa and Torino [9].

Fig. 1.1 presents a brief history of the algorithmic skeleton programming model. For a more in-depth description, please refer to [13].

A number of papers and technical reports discuss the different features of this programming environment [10, 5, 2], the results achieved when parallelizing different applications [18, 11, 15, 8, 1, 7, 6] and the use of FastFlow as software accelerator, i.e. as a mechanism suitable for exploiting unused cores of a multicore architecture to speed up execution of sequential code [3, 4]. This work represents instead a tutorial aimed at describing the use of the main FastFlow skeletons and patterns and its programming techniques, providing a number of simple (and not so simple) usage examples.

This tutorial describes the basic FastFlow concepts and the main skeletons targeting stream-parallelism, data-parallelism and data-flow parallelism. It is still not fully complete: for example important arguments and FastFlow features such as the FastFlow memory allocator, the thread to core affinity mapping, GPGPU programming and distributed systems programming are not yet covered in this tutorial.
Algorithmic skeletons were introduced by M. Cole in late 1988 [12]. According to this original work:

The new system presents the user with a selection of independent “algorithmic skeletons”, each of which describes the structure of a particular style of algorithm, in the way in which higher order functions represent general computational frameworks in the context of functional programming languages. The user must describe a solution to a problem as an instance of the appropriate skeleton.

Later, in his algorithmic skeleton “manifesto” [13] this definition evolved as follows:

many parallel algorithms can be characterized and classified by their adherence to one or more of a number of generic patterns of computation and interaction. For example, many diverse applications share the underlying control and data flow of the pipeline paradigm. Skeletal programming proposes that such patterns be abstracted and provided as a programmer’s toolkit, with specifications which transcend architectural variations but implementations which recognize these to enhance performance.

Different research groups started working on the algorithmic skeleton concept and produced different programming frameworks providing the application programmer with algorithmic skeletons. The definition of algorithmic skeletons evolved and eventually a widely shared definition emerged stating that:

An algorithmic skeleton is a parametric, reusable and portable programming abstraction modeling a known, common and efficient parallelism exploitation pattern.

Currently various frameworks exist that provide the application programmer with algorithmic skeletons. Usually, the frameworks provide stream parallel skeletons (pipeline, task farm), data parallel (map, reduce, scan, stencil, divide&conquer) and control parallel (loop, if-then-else) skeletons mostly as libraries to be linked with the application business code. Several programming frameworks are actively maintained, including Muesli http://www.wil.uni-muenster.de/pi/forschung/Skeletons/1.79/index.html, Sketo http://sketo.ipl-lab.org/, OSL http://traclifo.univ-orleans.fr/OSL/, SKEPU http://www.ida.liu.se/~chrke/skepu/, FastFlow http://mc-fastflow.sourceforge.net/fastflow, Skandium https://github.com/mleyton/Skandium. A recent survey of algorithmic skeleton frameworks may be found in [17].

Figure 1.1: Algorithmic skeletons [14]
Parallel patterns vs parallel skeletons:
Algorithmic skeletons and parallel design patterns have been developed in completely disjoint research frameworks but with almost the same objective: providing the programmer of parallel applications with an effective programming environment. The two approaches have many similarities addressed at different levels of abstraction. Algorithmic skeletons are aimed at directly providing pre-defined, efficient building blocks for parallel computations to the application programmer, whereas parallel design patterns are aimed at providing directions, suggestions, examples and concrete ways to program those building blocks in different contexts.

We want to emphasise the similarities of these two concepts and so, throughout this tutorial, we use the terms pattern and skeleton interchangeably. For an in-depth discussion on the similarities and the main differences of the two approaches please refer to [14].

This tutorial is organised as follow: Sec. 1.1 describes how to download the framework and compile programs, Sec. 2 recalls the FastFlow application design principles. Then, in Sec. 3 we introduce the main features of the stream-based parallel programming in FastFlow: how to wrap sequential code for handling a steam of data, how to generate streams and how to combine pipelines, farms and loop skeletons, how to set up farms and pipelines as software accelerator. In Sec. 4 we introduce data-parallel computations in FastFlow. ParallelFor, ParallelForReduce, ParallelForPipeReduce and Map are presented in this section. Finally, in Sec. 5 the macro data-flow programming model provided by the FastFlow framework is presented.

1.1 Installation and program compilation

FastFlow is provided as a set of header files. Therefore the installation process is trivial, as it only requires to download the last version of the FastFlow source code from the SourceForge (http://sourceforge.net/projects/mc-fastflow/) by using svn:

 svn co https://svn.code.sf.net/p/mc-fastflow/code fastflow

Once the code has been downloaded (with the above svn command, a fastflow folder will be created in the current directory), the directory containing the ff sub-directory with the FastFlow header files should be named in the -I flag of g++, such that the header files may be correctly found.

For convenience may be useful to set the environment variable FF_ROOT to point to the FastFlow source directory. For example, if the FastFlow tarball (or the svn checkout) is extracted into your home directory with the name fastflow, you may set FF_ROOT as follows (bash syntax):

 export FF_ROOT=$HOME/fastflow

Take into account that, since FastFlow is provided as a set of .hpp source files, the -O3 switch is essential to obtain good performance. Compiling with no -O3 compiler flag will lead to poor performance because the run-time code will not be optimised by the compiler. Also, remember that the correct compilation of FastFlow programs requires linking the pthread library (-pthread flag).
1.1.1 Tests and examples

In this tutorial a set of simple usage examples and small applications are described. In almost all cases, the code can be directly copy-pasted into a text editor and then compiled as described above. For convenience all codes are provided in a separate tarball file `fftutorial_source_code.tgz` with a Makefile.

At the beginning of all tests and examples presented, there is included the file name containing the code ready to be compiled and executed, for example:

```cpp
/* ******************************************************/
/*       hello_node.cpp       */
#include <iostream>
#include <ff/node.hpp>
using namespace ff;
struct myNode: ff_node {
    ....
```

means that the above code is in the file `hello_node.cpp`.

```cpp
g++ -std=c++11 -I$FF_ROOT -O3 test.cpp -o test -pthread
```
Chapter 2

Design principles

FastFlow has been originally designed to provide programmers with efficient parallelism exploitation patterns suitable to implement (fine grain) stream parallel applications. In particular, FastFlow has been designed

- to promote high-level parallel programming, and in particular skeletal programming (i.e. pattern-based explicit parallel programming), and
- to promote efficient programming of applications for multi-core.

More recently, within the activities of the EU FP7 STREP project ”ParaPhrase”\footnote{http://paraphrase-ict.eu} the FastFlow framework has been extended in several ways. In particular, in the framework have been added:

- several new high-level patterns
- facilities to support coordinated execution of FastFlow program on distributed multi-core machines
- support for execution of new data parallel patterns on GPGPUs
- new low-level parallel building blocks allowing to build almost any kind of streaming graph and parallel patterns.

The whole programming framework has been incrementally developed according to a layered design on top of Pthread/C++ standard programming framework as sketched in Fig. 2.1.

The Building blocks layer provides the basics blocks to build (and generate via C++ header-only templates) the run-time support of core patterns. Typical objects at this level are queues (e.g. lock-free SPSC queues, bounded and unbounded), process and thread containers (as C++ classes) mediator threads/processes (extensible and configurable schedulers and gatherers). The shared-memory run-time support extensively uses non-blocking lock-free algorithms,
the distributed run-time support employs zero-copy messaging, the GPGPUs support exploits asynchrony and SIMT optimised algorithms.

The **Core patterns** layer provides a general data-centric parallel programming model with its run-time support, which is designed to be minimal and reduce to the minimum typical sources of overheads in parallel programming. At this level there are two patterns (task-farm and all its variants and pipeline) and one pattern-modifier (feedback). They make it possible to build very general (deadlock-free) cyclic process networks. They are not graphs of tasks, they are graphs of parallel executors (processes/threads). Tasks or data items flows across them according to the data-flow model. Overall, the programming model can be envisioned as a shared-memory streaming model, i.e. a shared-memory model equipped with message-passing synchronisations. They are implemented on top of building blocks.

The **High-level patterns** are clearly characterised in a specific usage context and are targeted to the parallelisation of sequential (legacy) code. Examples are exploitation of loop parallelism (ParallelFor and its variants), stream parallelism (pipeline and task-farm), data-parallel algorithms (map, poolEvolution, stencil, StencilReduce), execution of general workflows of tasks (mdf - Macro Data-Flow), etc. They are typically equipped with self-optimisation capabilities (e.g. load-balancing, grain auto-tuning, parallelism-degree auto-tuning) and exhibit limited nesting capability. Some of them targets specific devices (e.g. GPGPUs). They are implemented on top of core patterns.

Parallel application programmers are supposed to use **FastFlow** directly exploiting the parallel patterns available at the ”High-level” or ”Core” levels. In particular:

- defining sequential concurrent activities, by sub classing a proper **FastFlow** class, the ff_node (or ff_minode and ff_monode) class, and
• building complex stream parallel patterns by hierarchically composing sequential concurrent activities, pipeline patterns, feedbacks, task-farm patterns and their "specialised" versions implementing more complex parallel patterns.

Concerning the usage of FastFlow to support parallel application development on shared memory multi-core, the framework provides two possible abstractions of structured parallel computation:

• a skeleton program abstraction used to implement applications completely modelled according to the algorithmic skeleton concepts. When using this abstraction, the programmer writes a parallel application by providing the business logic code, wrapped into proper `ff_node` sub-classes, a skeleton (composition) modelling the parallelism exploitation pattern of the application and a single command starting the skeleton computation and awaiting for its termination.

• an accelerator abstraction used to parallelize (and therefore to accelerate) only some parts of an existing application. In this case, the programmer provides a skeleton composition which is run on the "spare" cores of the architecture and implements a parallel version of part of the business logic of the application, e.g. the one computing a given $f(x)$. The skeleton composition, if operating on stream (i.e. pipeline or task-farm based compositions), will have its own input and output channels. When an $f(x_j)$ has to be computed within the application, rather than writing code to call to the sequential f code, the programmer may insert asynchronous "offloading" calls for sending x_j to the accelerator skeleton. Later on, when the result of $f(x_j)$ has to be used, the code needed for "reading" accelerator results may be used to retrieve the computed values.

This second abstraction fully implements the "minimal disruption" principle stated by Cole in his skeleton manifesto [13], as the programmer using the accelerator is only required to program a couple of `offload/get_result` primitives in place of the single $\ldots = f(x)$ function call statement (see Sec. 3.7).
Chapter 3

Stream parallelism

An application may operate on values organised as streams. A stream is a possibly infinite sequence of values, all of them having the same data type, e.g. a stream of images (not necessarily all having the same format), a stream of files, a stream of network packets, a stream of bits, etc.

A complex streaming application may be seen as a graph (or workflow) of computing modules (sequential or parallels) whose arcs connecting them bring streams of data of different types. The typical requirements of such a complex streaming application is to guarantee a given Quality of Service imposed by the application context. In a nutshell, that means that the modules of the workflow describing the application have to be able to sustain a given throughput.

There are many applications in which the input streams are primitive, because they are generated by external sources (e.g. HW sensors, networks, etc.) or I/O. However, there are cases in which streams are not primitive, but it is possible that they can be generated directly within the program. For example, sequential loops or iterators. In the following we will see how to generate a stream of data in FastFlow starting from sequential loops.

3.1 Stream parallel skeletons

Stream parallel skeletons are those natively operating on streams, notably pipeline and task-farm (or simply farm).

pipeline

The pipeline skeleton is typically used to model computations expressed in stages. In the general case, a pipeline may have more than two stages, and it can be built as a single pipeline with \(N \) stages or as pipeline of pipelines. Given a stream of input tasks

\[x_m, \ldots, x_1 \]
the pipeline with stages \(s_1, \ldots, s_p \)
computes the output stream
\[
s_p(s_2(s_1(x_m))) \ldots, s_p(s_2(s_1(x)))
\]

The parallel semantics of the pipeline skeleton ensures that all the stages will be execute in parallel. It is possible to demonstrate that the total time required to entirely compute a single task (latency) is close to the sum of the times required to compute the different stages. And, the time needed to output a new result (throughput) is close to time spent to compute a single task by the slowest stage in the pipeline.

task-farm

The task-farm (sometimes also called master-worker) is a stream parallel paradigm based on the replication of a purely functional computation. The farm skeleton is used to model embarrassingly parallel computations. The only functional parameter of a farm is the function \(f \) needed to compute the single task. The function \(f \) is stateless. Only under particular conditions, functions with internal state, may be used.

Given a stream of input tasks
\[
x_m, \ldots, x_1
\]
the farm with function \(f \) computes the output stream
\[
f(x_m), \ldots, f(x_1)
\]
Its parallel semantics ensures that it will process tasks such that the single task latency is close to the time needed to compute the function \(f \) sequentially, while the throughput (only under certain conditions) is close to \(\frac{f}{n} \) where \(n \) is the number of parallel agents used to execute the farm (called workers), i.e. its parallelism degree.

The concurrent scheme of a farm is composed of three distinct parts: the Emitter, the pool of workers and the Collector. The Emitter gets a farm’s input tasks and distributes them to workers using a given scheduling strategy. The Collector collects tasks from workers and sends them to the farm’s output stream.

3.2 FastFlow abstractions

In this section we describe the sequential concurrent activities \(ff_node, ff_minode, ff_monode \) and \(ff_dnode \), and the "core" skeletons pipeline and task-farm (see Fig 3.1) used as building blocks to model composition and parallel executions. The core skeletons are ff_node derived objects as well, so they can be nested and composed in almost any arbitrary way. The feedback pattern modifier can also be used in the pipeline and task-farm to build complex cyclic streaming networks.
3.2.1 *ff_node*

The *ff_node* sequential concurrent activity abstraction provides a means to define a sequential activity (via its *svc* method) that a) processes data items appearing on a single input channel and b) delivers the related results onto a single output channel.

In a multi-core, a *ff_node* object is implemented as a non-blocking thread (or a set of non-blocking threads). This means that the number of *ff_node* objects concurrently running should not exceed the number of logical cores of the platform at hand. The latest version of *FastFlow* supports also blocking run-time. It is possible to select the blocking run-time by compiling the code with the flag -DBLOCKING_MODE.

The *ff_node* class actually defines a number of methods, the following three virtual methods are of particular importance:

```cpp
public:
  virtual void* svc(void* task) = 0; // encapsulates user’s business code
  virtual int svc_init() { return 0; } // initialization code
  virtual void svc_end() {} // finalization code
```

The first is the one defining the behaviour of the node while processing the input stream data items. The other two methods are automatically invoked once and for all by the *FastFlow* RTS when the concurrent activity represented by the node is started (*svc_init*) and right before it is terminated (*svc_end*). These virtual methods may be overwritten in the user supplied *ff_node* subclasses to implement initialisation code and finalisation code, respectively. Since the *svc* method is a pure virtual function, it must be overwritten.

A *FastFlow* *ff_node* can be defined as follow:

```cpp
#include <ff/node.hpp>
using namespace ff;
struct myStage : ff_node {
  int svc_init() { // not mandatory
    // initialize the stage
  }
}
```
return 0; // returning non zero means error!
}
void svc(void *task) {
 // business code here working on the input 'task'
 return task; // may return a task or EOS,GO_ON,GO_OUT,EOS_NOFREEZE
}
void svc_end() { // not mandatory
 // finalize the stage, free resources, ...
}
}

The ff_node behaves as a loop that gets an input task (coming from the input channel), i.e. the input parameter of the svc method, and produces one or more outputs, i.e. the return value of the svc method or the invocation of the ff_send_out method that can be called inside the svc method. The loop terminates either if the output provided or the input received is a special value: "End-Of-Stream" (EOS). The EOS is propagated across channels to the next ff_node.

Particular cases of ff_nodes may be simply implemented with no input channel or no output channel. The former is used to install a concurrent activity generating an output stream (e.g. from data items read from keyboard or from a disk file); the latter to install a concurrent activity consuming an input stream (e.g. to present results on a video, to store them on disk or to send output packets into the network).

The simplified life cycle of an ff_node is informally described in the following pseudo-code:

do {
 if (svc_init() < 0) break;
 do {
 intask = input_stream.get();
 if (task == EOS) output_stream.put(EOS);
 else {
 outtask = svc(intask);
 output_stream.put(EOS);
 }
 } while(outtask != EOS);
 svc_end();
 termination = true;
 if (thread_has_to_be_frozen() == "yes") {
 freeze_the_thread_and_wait_for_thawing();
 termination = false;
 }
} while(!termination);

It is also possible to return from a ff_node the value GO_ON. This special value tells the run-time system (RTS) that there are no more tasks to send to the next stage and that the ff_node is ready to receive the next input task (if any). The GO_ON task is not propagated to the next stage. Other special values can be returned by an ff_node, such as GO_OUT and EOS_NOFREEZE, both of which are not propagated to the next stages and are used to exit the main node loop. The difference is that while GO_OUT allows the thread to be put to sleep (if it has been started with run_then_freeze), the second one instead allows to jump directly to the point where input channels are checked for receiving new tasks without having the possibility to stop the thread.
An ff_node cannot be started alone (unless the method run() and wait() are overwritten). Instead, it is assumed that ff_node objects are used as pipeline stages or task-farm workers. In order to show how to execute and wait for termination of ff_node objects, we provide here a simple wrapper class (in the next sections we will see that pipeline and task-farm are ff_node derived objects):

```cpp
#include <iostream>
#include <ff/node.hpp>

using namespace ff;

struct myNode: ff_node {
    // called once at the beginning of node's life cycle
    int svc_init () {
        std::cout << "Hello, I'm (re-)starting...\n";
        counter = 0;
        return 0; // 0 means success
    }

    // called for each input task of the stream, or until
    // the EOS is returned if the node has no input stream
    void svc (void *task) {
        if (++counter > 5) return EOS;
        std::cout << "Hi! (" << counter << ")\n";
        return GO_ON; // keep calling me again
    }

    // called once at the end of node's life cycle
    void svc_end () { std::cout << "Goodbye!\n"; }

    // starts the node and waits for its termination
    int run_and_wait_end (bool=false) {
        if (ff_node::run() < 0) return -1;
        return ff_node::wait();
    }

    // first sets the freeze flag then starts the node
    int run_then_freeze () { return ff_node::freeze_and_run(); }

    // waits for node pause (i.e. until the node is put to sleep)
    int wait_freezing () { return ff_node::wait_freezing(); }

    // waits for node termination
    int wait () { return ff_node::wait(); }

    long counter;
};

int main () {
    myNode mynode;
    if (mynode.run_and_wait_end()<0)
        error(" running myNode");
    std::cout << "first run done\n";
    long i=0;
    do {
        if (mynode.run_then_freeze()<0)
            error(" running myNode");
        if (mynode.wait_freezing())
            error(" waiting myNode");
        std::cout << " run " << i << " done\n";
    } while(++i<3);
    if (mynode.wait())
        error(" waiting myNode");
    return 0;
}
```

In this example, myNode has been defined by redefining all methods needed to execute the node, put the node to sleep (freeze the node), wake-up the node
(thaw the node) and waiting for its termination.

Line 41 starts the computation of the node and waits for its termination synchronously. At line 46 the node is started again but in this case the run_then_freeze method first sets the ff_node::freezing flag and then starts the node (i.e. creates the thread which execute the node). The ff_node::freezing flag tells the run-time that the node has to be put to sleep (frozen using our terminology) instead of terminating it when an EOS is received in input or it is returned by the node itself. The node runs asynchronously with respect to the main thread, so in order to synchronise the executions, the wait_freezing method is used (it waits until the node is frozen by the FastFlow run-time). When the run_then_freeze method is called again, since the node is frozen, instead of starting another thread, the run-time just “thaws” the thread.

Typed ff_node, the ff_node_t:

Sometimes it could be useful to use the typed version of the ff_node abstraction, i.e. ff_node_t<Tin,Tout>. This class just provides a typed interface for the svc method:

```cpp
1  template<typename IN_t, typename OUT_t=IN_t>
2  class ff_node_t : public ff_node {
3    public:
4      virtual OUT_t *svc(IN_t *task) = 0;
5      ...
6  };
```

For the tests and examples used in this tutorial we use both the ff_node and the ff_node_t classes for defining node abstractions.

3.2.2 ff_Pipe

Pipeline skeletons in FastFlow can be easily instantiated using the C++11-based constructors available in the latest release of FastFlow.

The standard way to create a pipeline of n different stages in FastFlow is to create n distinct ff_node objects and then pass them in the correct order to the ff_Pipe constructor\(^1\). For example, the following code creates a 3-stage pipeline:

\(^1\)The class ff_Pipe is a wrapper of the class ff_pipeline
To execute the pipeline it is possible to use the `run_and_wait_end()` method. This method starts the pipeline and synchronously waits for its termination.

The `ff_Pipe` constructor also accepts as pipeline stage `ff_node_F` objects. The `ff_node_F` class allows to create an `ff_node` from a function having the following signature `Tout*(*)(Tin*,ff_node*const)`. This is because in many situations it is simpler to write a function than an `ff_node`.

The FastFlow run-time calls the function passing as first parameter the input task and as second parameter the pointer to the low-level `ff_node` object.

As an example consider the following 3-stage pipeline:

```
#include <iostream>
#include <ff/pipeline.hpp> // defines ff_pipeline and ff_Pipe
using namespace ff;

typedef long myTask; // this is my input/output type

struct firstStage { ff_node_t<myTask> { // 1st stage
    myTask *svc(myTask *t)
    { // sending 10 tasks to the next stage
        for (long i=0; i<10;++i)
            ff_send_out(new myTask(i));
        return EOS; // End-Of-Stream
    }
};

struct secondStage { ff_node_t<myTask> { // 2nd stage
    myTask *svc(myTask *t)
    { // pass the task to the next stage
        return t;
    }
};

struct thirdStage { ff_node_t<myTask> { // 3rd stage
    myTask *svc(myTask *t)
    { // 3rd stage
        std::cout << "Hello I'm stage 3, I've received " << *t << "\n";
        return GO_ON;
    }
};

int main() {
    firstStage _1;
    secondStage _2;
    thirdStage _3;
    ff_Pipe<> pipe(_1,_2,_3);
    if (pipe.run_and_wait_end()<0) error("running pipe");
    return 0;
}
```

It is also possible to run the pipeline asynchronously.
std::cout << "Hello I'm stage F3, I've received " << *task << "\n";
return task;
}

int main() {
 // F1 and F3 are 2 functions, F2 is an ff_node
 ff_node_F<myTask> first(F1);
 ff_node_F<myTask> last(F3);
 ff_Pipe<> pipe(first, F2, last);
 if (pipe.run_and_wait_end() < 0) error("running pipe");
 return 0;
}

In the above F1 and F2 are used as first and third stage of the pipeline whereas an ff_node_t<myTask> object is used for the middle stage. Note that the first stage, generates 10 tasks and then an EOS.

Finally, it is also possible to add stages (of type ff_node) to a pipeline using the add_stage method as in the following sketch of code:

```cpp
int main() {
  ff_Pipe<> pipe(first,F2,last);
  Stage4 stage4; // Stage4 is an ff_node derived class
  pipe.add_stage(stage4);
  // Stage5 is an ff_node derived class
  pipe.add_stage(make_unique<Stage5>());
  if (pipe.run_and_wait_end() < 0) error("running pipe");
  return 0;
}
```

3.2.3 ff_minode and ff_monode

The ff_minode and the ff_monode are multi-input and multi-output FastFlow nodes, respectively. By using these kinds of node, it is possible to build more complex skeleton structures. For example, the following code implements a 4-stage pipeline where each stage sends some of the tasks received in input back to the first stage. As for the ff_node_t<Tin,Tout>, the framework also provides the ff_minode_t<Tin,Tout> and ff_monode_t<Tin,Tout> classes in which the svc method accepts pointers of type Tin and returns pointers to data of type Tout.

```cpp
#include <ff/pipeline.hpp> // defines ff_pipeline and ff_Pipe
#include <ff/farm.hpp> // defines ff_minode and ff_monode

using namespace ff;

long const int NUMTASKS=20;
struct Stage0: ff_minode_t<long> {
  int svc_init() { counter=0; return 0;}
  long *svc(long *task) {
    if (task==NULL) {
      for (long i=1;i<NUMTASKS;++i)
        if_send_out((long*)i);
    return GO_ON;
  }
```
To create a loopback channel we have used the wrap_around method available in both the ff_Pipe and the ff_Farm skeletons. More details on feedback channels in Sec. 3.5.

3.2.4 ff_farm and ff_Farm

Here we introduce the other primitive skeleton provided in FastFlow, namely the ff_farm skeleton.
The standard way to create a *task-farm* skeleton with \(n \) workers is to create \(n \) distinct *ff_node* objects (workers node), pack them in a `std::vector` and then pass the vector to the `ff_farm` constructor. Let’s have a look at the following "hello world"-like program:

```cpp
#include <vector>
#include <ff/farm.hpp>
using namespace ff;

struct Worker : ff::node {
    void *svc(void *t) {
        std::cout << "Hello I'm the worker " << get_my_id() << "\n";
        return t;
    }
};

int main(int argc, char *argv[]) {
    assert(argc > 1);
    int nworkers = atoi(argv[1]);
    std::vector<ff::node *> Workers;
    for (int i = 0; i < nworkers; ++i) {
        Workers.push_back(new Worker);
        ff::farm myFarm(Workers);
        if (myFarm.run_and_wait_end() < 0) error("running myFarm");
        return 0;
    }
}
```

This code basically defines a farm with \(n \) workers processing data items appearing onto the farm input stream and delivering results onto the farm output stream. The default scheduling policy used to send input tasks to workers is the "pseudo round-robin one" (see Sec. 3.3). Workers are implemented by the *Worker* objects. These objects may represent sequential concurrent activities as well as further skeletons, that is either pipeline or farm instances. The above defined farm `myFarm` has the default Emitter (or scheduler) and the default Collector (or gatherer) implemented as separate concurrent activity. To execute the farm synchronously, the `run_and_wait_end()` method is used.

A different interface for the farm pattern is the one provided by the `ff_Farm` class. This interface makes use of `std::unique_ptr` which helps to avoid memory leaks to non-expert *FastFlow* programmers.

Instead of a `std::vector<ff_node*>`, it gets as first input parameter an l-value reference to a `std::vector<std::unique_ptr<ff_node>>`. The vector can be created as follows:

```cpp
std::vector<std::unique_ptr<ff::node>> Workers;
for (int i = 0; i < nworkers; ++i) {
    Workers.push_back(make_unique<Worker>(i));
}
```

another way to create the vector of `ff_node` is by using C++ lambdas as in the following code:

```cpp
ff_Farm<> farm([nworkers] () {
    std::vector<std::unique_ptr<ff_node>> Workers;
    for (int i = 0; i < nworkers; ++i) {
        Workers.push_back(make_unique<Worker>(i));
    }
    return Workers;
};
```

From now on, we will use the interface provided by the `ff_Farm` class.

Let’s now consider again the simple example `hello_farm.cpp`. Compiling and running the code we have:
As you can see, the workers are activated only once because there is no input stream. The only way to provide an input stream to a FastFlow streaming network is to have the first component in the network generating a stream or by reading a "real" input stream. To this end, we may for example use the farm described above as a second stage of a pipeline skeleton whose first stage generates the stream and the last stage just writes the results on the screen:

```cpp
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
using namespace ff;
struct Worker : ff::node<long>
{
  int svc_init()
  {
    std::cout << "Hello I'm the worker" << get_my_id() << "\n";
    return 0;
  }
  long *svc(long *)
  {
    std::cout << my_id << "\n";
    return 0;
  }
};
struct firstStage : ff::node<long>
{
  long size = 10;
  long *svc(long *)
  {
    for(long i = 0; i < size; ++i)
      ff_send_out(new long(i));
    return EOS; // End-Of-Stream
  }
};
streamGenerator;
struct lastStage : ff::node<long>
{
  long *svc(long *)
  {
    const long &task = *t;
    std::cout << "Last stage, received " << task << "\n";
    delete t;
    return GO_ON; // this means "no task to send out, let's go on..."
  }
};
streamDrainer;
int main(int argc, char *argv[])
{
  assert(argc > 1);
  int nworkers = atoi(argv[1]);
  ff::Farm<long> farm([nworkers]()
  {
    std::vector<std::unique_ptr<ff::node>> Workers;
    for(int i = 0; i < nworkers; ++i)
      Workers.push_back(make_unique<Worker>(i));
    return Workers;
  }());
  ff::Pipe<> pipe(streamGenerator, farm, streamDrainer);
  if (pipe.run_and_wait_end() < 0) error("running pipe");
  return 0;
}
```

In some cases, could be convenient to create a task-farm just from a single function (i.e. without defining the `ff::node`). Provided that the function has the following signature:

```cpp
Tout(*)(Tin*, ff::node*const)
```

a very simple way to instantiate a farm is to pass the function and the number of workers you want to use (replication degree) in the `ff::Farm` construct, as in the following sketch of code:
#include <ff/farm.hpp>
using namespace ff;

struct myTask {
 // this is my input/output type
}

myTask *F(myTask *in, ff_node< const node > {...}

ff_Farm<> farm(F, 3); // creates a farm executing 3 replicas of F

Defining Emitter and Collector in a farm

Both emitter and collector of a farm may be redefined. They can be supplied to the farm as ff_node objects. Considering the farm skeleton as a particular case of a a 3-stage pipeline (the first stage and the last stage are the Emitter and the Collector, respectively), we now want to re-write the previous example using only the FastFlow farm:

```cpp
#include <vector>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
using namespace ff;

struct Worker : ff_node< long > {
    int svc_init() {
        std::cout << "Hello I'm the worker " << get_my_id() << "\n";
        return 0;
    }

    long *svc(long *) { return t; }
};

struct firstStage : ff_node< long > {
    long size=10;
    long *svc(long *) {
        for (long i=0; i < size; ++i)
            ff_send_out(new long(i));
    return EOS;
    }
} Emitter;

struct lastStage : ff_node< long > {
    long *svc(long *) {
        const long &task=t;
        std::cout << "Last stage, received " << task << "\n";
        delete t;
    return GO_ON;
    }
} Collector;

int main(int argc, char *argv[]) {
    assert(argc>1);
    int nworkers = atoi(argv[1]);
    ff_Farm< long > farm( [nworkers]() {
        std::vector< std::unique_ptr< ff_node > > Workers;
        for (int i=0;i<nworkers;++i)
            Workers.push_back(make_unique< Worker >());
    return Workers;
    }(), Emitter, Collector);
    if ((farm.run_and_wait_end()<0) error("running farm");
    return 0;
}
```

The Emitter node encapsulates the user code provided in the svc method and the task scheduling policy which defines how tasks will be sent to workers. In the same way, the Collector node encapsulates the user code and the task gathering policy so defining how tasks have to be collected from the workers.
It is possible to redefine both scheduling and gathering policies of the FastFlow farm skeleton, please refer to [10].

Farm with no Collector

We consider now a further case: a farm with the Emitter but without the Collector. Without the collector, farm’s workers may either consolidates the results in the main memory or send them to the next stage (in case the farm is in a pipeline stage) provided that the next stage is defined as `ff_minode` (i.e. multi-input node).

It is possible to remove the collector from the `ff_farm` by calling the method `remove_collector`. Let’s see a simple example implementing the above case:

```cpp
/* **************************** */
/* ******* hello_farm4.cpp ******* */
/* *
* |
* Workerm
* Emitter
*      |
* LastStage
*      |
* Workerm

*/

#include <vector>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
using namespace ff;

struct Worker : ff::node<long> {
    int svc_init() {
        std::cout << "Hello I’m the worker " << get_my_id() << "\n";
        return 0;
    }
    long *svc(long *t) {
        return t; // it does nothing, just sends out tasks
    }
};

struct firstStage : ff::node<long> {
    long size=10;
    long *svc(long *t) {
        for(long i=0; i < size; ++i)
            // sends the task into the output channel
            ff_send_out(new long(i));
        return EOS;
    }
};

Emitter;

struct lastStage : ff::minode<long> { // NOTE: multi-input node
    long *svc(long *t) {
        const long &task=t;
        std::cout << "Last stage, received " << task
                   << " from " << get_channel_id() << "\n";
        delete t;
        return GO_ON;
    }
};

LastStage;

int main(int argc, char *argv[]) {
    assert(argc>1);
    int nworkers = atoi(argv[1]);
    std::vector<std::unique_ptr<ff_node>> Workers;
    ...
3.3 Tasks scheduling

Sending tasks to specific farm workers

In order to select the worker where an incoming input task has to be directed, the FastFlow farm uses an internal `ff_loadbalancer` that provides a method `int selectworker()` returning the index in the worker array corresponding to the worker where the next task has to be directed. The programmer may subclass the `ff_loadbalancer` and provide his own `selectworker()` method and then pass the new load balancer to the farm emitter, therefore implementing a farm with a user defined scheduling policy. To understand how to do this, please refer to [16].

Another simpler option for scheduling tasks directly in the `svc` method of the farm emitter is to use the `ff_send_out_to` method of the `ff_loadbalancer` class. In this case what is needed is to pass the default load balancer object to the emitter thread and to use the `ff_loadbalancer::ff_send_out_to` method instead of `ff_node::ff_send_out` method for sending out tasks.

Let’s see a simple example showing how to send the first and last task to a specific workers (worker 0).

```cpp
#include <vector>
#include <ff/farm.hpp>
using namespace ff;
struct Worker : ff::node_t<long> {
 long *svc(long *task) {
 std::cout << "Worker " << get_my_id() << " has got the task " << *task << " \n";
 delete task;
 return GO_ON;
 }
};
struct Emitter : ff::node_t<long> {
 Emitter(ff::loadbalancer *const lb):lb(lb) {}
 long *svc(long *) {
 for(long i=0; i <= size; ++i) {
 if (i==0 || i == (size-1))
 lb->ff::send_out_to(new long(i), 0);
 }
 return EOS;
 }
 ff::loadbalancer *lb;
 const long size=10;
};
```
30 int main(int argc, char *argv[]) {
31 assert(argc>1);
32 int nworkers = atoi(argv[1]);
33 std::vector< unique_ptr<ff::node> > Workers;
34 for(int i=0; i<nworkers;++i)
35 Workers.push_back(make_unique<Worker>());
36 ff::Farm<long> farm(std::move(Workers));
37 Emitter E(farm.getlb());
38 farm.add_emitter(E); // adds the specialized emitter
39 farm.remove_collector(); // this removes the default collector
40 if (farm.run_and_wait_end()<0) error("running farm");
41 return 0;
42 }

Broadcasting a task to all workers

FastFlow supports the possibility to direct a task to all the workers in the farm. It is particularly useful if we want to process the task by workers implementing different functions (so called MISD farm). The broadcasting is achieved by calling the broadcast_task method of the ff_loadbalancer object, in a very similar way to what we have already seen for the ff_send_out_to method in the previous section.

In the following a simple example.

```c++
/* ** */
/* *** farm_misd.cpp *** */
#include <vector>
#include <ff/farm.hpp>
using namespace ff;

struct WorkerA : ff::node<long> {
 long *svc(long *task) {
 std::cout << "WorkerA has got the task " << *task << "\n";
 return task;
 }
};

struct WorkerB : ff::node<long> {
 long *svc(long *task) {
 std::cout << "WorkerB has got the task " << *task << "\n";
 return task;
 }
};

struct Emitter : ff::node<long> {
 Emitter(ff::loadbalancer *const lb):lb(lb) {}
 ff::loadbalancer *const lb;
 const long size=10;
 long *svc(long *) {
 for(long i=0; i < size; ++i) {
 lb->broadcast_task(new long(i));
 }
 return EOS;
 }
};

struct Collector : ff::node<long> {
 Collector(ff::gatherer *const gt):gt(gt) {}
 ff::gatherer *const gt;
 long *svc(long *task) {
 std::cout << "received task from Worker " << gt->get_channel_id() << "\n";
 if (gt->get_channel_id() == 0) delete task;
 return GO_ON;
 }
};

int main(int argc, char *argv[]) {
```
```cpp
assert (argc > 1);
int nworkers = atoi (argv[1]);
assert (nworkers >= 2);
std::vector< std::unique_ptr< ff_node > > Workers;
for (int i = 0; i < nworkers / 2; ++i)
 Workers.push_back(make_unique< WorkerA >());
for (int i = nworkers / 2; i < nworkers; ++i)
 Workers.push_back(make_unique< WorkerB >());
ff_Farm <> farm(std::move(Workers));
Emitter E(farm.getl());
Collector C(farm.getgt());
farm.add_emitter(E); // add the specialized emitter
farm.add_collector(C);
if (farm.run_and_wait_end() < 0) error("running farm");
return 0;
}
```

## Using auto-scheduling

The default *farm* scheduling policy is "loosely round-robin" (or pseudo round-robin) meaning that the Emitter try to send the task in a round-robin fashion, but in case one of the workers' input queue is full, the Emitter does not wait till it can insert the task in the queue, but jumps to the next worker until the task can be inserted in one of the queues. This is a very simple policy but it doesn’t work well if the tasks have very different execution costs.

**FastFlow** provides a suitable way to define a task-farm skeleton with the "auto-scheduling" policy. When using such policy, the workers "ask" for a task to be computed rather than (passively) accepting tasks sent by the emitter (explicit or implicit) according to some scheduling policy.

This scheduling behaviour may be simply implemented by using the method `set_scheduling_ondemand()` of the `ff_farm` class, as in the following:

```cpp
ff_Farm <> myFarm(...);
myFarm.set_scheduling_ondemand();
...;
```

It is worth to remark that, this policy is able to ensure quite good load balancing property when the tasks to be computed exhibit different computational costs and up to the point when the Emitter does not become a bottleneck.

It is possible to increase the asynchrony level of the "request-reply" protocol between workers and Emitter simply by passing an integer value greater than zero to the `set_scheduling_ondemand()` function. By default the asynchrony level is 1.

### 3.4 Tasks ordering

Tasks passing through a task-farm can be subjected to reordering because of different execution times in the worker threads. To overcome the problem of sending packets in a different order with respect to input, tasks can be reordered by the Collector. This solution might introduce extra latency mainly because reordering checks have to be executed even in the case packets already arrive at the farm Collector in the correct order.
The default round-robin and auto scheduling policies are not order preserving, for this reason a specialised version of the FastFlow farm has been introduced which enforce the ordering of the packets. The ordered farm may be introduced by using the ff_ofarm skeleton.

```cpp
1 #include <vector>
2 #include <ff/farm.hpp>
3 #include <ff/pipeline.hpp>
4 using namespace ff;
5
typedef std::pair<long, long> ffftast t;
6
struct Start : ff_node_t<ffast_t> {
 Start(long streamlen) : streamlen(streamlen) {}
 ffast_t *svc(ffast_t *task) {
 for (long j = 0; j < streamlen; j++) {
 ff_send_out(new std::pair<long, long>(random() % 20000, j));
 }
 return EOS;
 }
 long streamlen;
};

struct Worker : ff_node_t<ffast_t> {
 ffast_t *svc(ffast_t *task) {
 for (volatile long j = task->first; j > 0; --j) {
 return task;
 }
 }
};

struct Stop : ff_node_t<ffast_t> {
 int svc_init() { expected = 0; return 0; }
 ffast_t *svc(ffast_t *task) {
 if (task->second != expected)
 std::cerr << "ERROR: tasks received out of order, received "
 " expected "
 " expected " << std::endl;
 expected++;
 delete task;
 return GO_ON;
 }
 long expected;
};

int main() {
 long nworkers = 2, streamlen = 1000;
 srandom(1);
 Start start(streamlen);
 Stop stop;
 std::vector<std::unique_ptr<ff_node>> W;
 for (int i = 0; i < nworkers; ++i) {
 W.push_back(make_unique<Worker>());
 }
 ff_Farm<> ofarm(std::move(W));
 ff_Pipe<> pipe(start, ofarm, stop);
 if (pipe.run_and_wait_end() < 0)
 error("running pipe\n");
 return 0;
}
```
3.5 Feedback channels

There are cases where it is useful to have the possibility to route back some results to the streaming network input stream for further computation. For example, this possibility may be exploited to implement the divide&conquer pattern using the task-farm.

The feedback channel in a farm or pipeline may be introduced by the wrap_around method on the interested skeleton. As an example, in the following code it is implemented a task-farm with default Emitter and Collector and with a feedback channel between the Collector and the Emitter:

```cpp
Emitter myEmitter;
Collector myCollector;
ff_Farm <> myFarm(std::move(W),myEmitter,myCollector);
myFarm.wrap_around();
```

Starting with FastFlow version 2.0.0, it is possible to use feedback channels not only at the outermost skeleton level. As an example, in the following we provide the code needed to create a 2-stage pipeline where the second stage is a farm without Collector and a feedback channel between each worker and the farm Emitter:

```cpp
#include <ff/farm.hpp>
#include <ff/pipeline.hpp>
using namespace ff;
const long stream_length = 20;

long *F(long *in, ff_node< const >) {
 *in *= *in;
 return in;
}
struct Sched : ff_node_t< long > {
 Sched(ff_loadbalancer< const > lb):lb(lb) {}
 long* svc(long *task) {
 int channel=lb->get_channel_id();
 if (channel == -1) {
 std::cout << "Task " << *task << " coming from Stage0\n";
 return task;
 }
 std::cout << "Task " << *task << " coming from Worker" << channel << "\n";
 delete task;
 return GO_ON;
 }
 void eosnotify(ssize_t) {
 // received EOS from Stage0, broadcast EOS to all workers
 lb->broadcast_task(EOS);
 }
};
```
In this case the Emitter node of the farm receives tasks both from the first stage of the pipeline and from farm’s workers. To discern different inputs it is used the \texttt{ff\_get\_channel\_id} method of the \texttt{ff\_loadbalancer} object: inputs coming from workers have channel id greater than 0 (the channel id correspond to the worker id). The Emitter non-deterministic way processes input tasks giving higher priority to the tasks coming back from workers.

It is important to note how EOS propagation works in presence of loopback channels. Normally, the EOS is automatically propagated onward by the FastFlow run-time in order to implement pipeline-like termination. When internal loopback channels are present in the skeleton tree (and in general when there is multi-input nodes), the EOS is propagated only if the EOS message has been received from all input channels. In this case is useful to be notified when an EOS is received so that the termination can be controlled by the programmer. In the proposed example above, we want to propagate the EOS as soon as we receive it from the \texttt{Stage0} and then to terminate the execution only after having received all EOS from all workers.

### 3.6 Mixing farms pipelines and feedbacks

FastFlow pipeline, task-farm skeletons and the feedback pattern modifier can be nested and combined in many different ways. Figure 3.4 sketches some of the possible combinations that can be realised in a easy way.

### 3.7 Software accelerators

FastFlow can be used to accelerate existing sequential code without the need of completely restructuring the entire application using algorithmic skeletons. In a nutshell, programmers may identify potentially concurrent tasks within the sequential code and request their execution from an appropriate FastFlow
Figure 3.4: FastFlow’s core patterns may be almost arbitrary composed pattern on the fly.

By analogy with what happens with GPGPUs and FPGAs used to support computations on the main processing unit, the cores used to run the user defined tasks through FastFlow define a software “accelerator” device. This device will run on the “spare” cores available. FastFlow accelerator is a “software device” that can be used to speedup portions of code using the cores left unused by the main application. From a more formal perspective, a FastFlow accelerator is defined by a skeletal composition augmented with an input and an output stream that can be, respectively, pushed and popped from outside the accelerator. Both the functional and extra-functional behaviour of the accelerator is fully determined by the chosen skeletal composition.

Using FastFlow accelerator mode is not that different from using FastFlow to write an application only using skeletons (see Fig. 3.5). The skeletons must be started as a software accelerator, and tasks have to be offloaded from the main program. A simple program using the FastFlow accelerator mode is shown below:

```c++
1 /* ********************************** */
2 /* accelerator.cpp */
3 #include <vector>
4 #include <ff/farm.hpp>
5 using namespace ff;
6 struct Worker: fnode_t<long> {
7 long *svc(long *task) {
8 *task = pow(*task, 3);
9 return task;
10 }
11 }
12 ```
```cpp
int main(int argc, char *argv[]) {
  assert(argc > 2);
  int nworkers = atoi(argv[1]);
  int streamlen = atoi(argv[2]);
  std::vector<std::unique_ptr<ff_node>> Workers;
  for (int i = 0; i < nworkers; ++i)
    Workers.push_back(make_unique<Worker>();
  ff_Farm<long> farm(std::move(Workers),
                     true /* accelerator mode turned on*/);
  // Now run the accelerator asynchronously
  if (farm.run() < 0) // farm.run() can also be used here
    error("running farm");
  long *result = nullptr;
  for (long i = 0; i < streamlen; i++) {
    long *task = new long(i);
    // Here offloading computation onto the farm
    farm.offload(task);
    // do something smart here...
    for (volatile long k = 0; k < 10000; ++k)
    }
  farm.offload(EOS); // sending End-Of-Stream
  #if 1
  // get all remaining results synchronously.
  while (farm.load_result(result)) {
    std::cerr << "[inside for loop] result= " << *result << ":n";
    delete result;
  }
  #else
  #endif
}
```

Figure 3.5: FastFlow software accelerator conceptual design
The "true" parameter in the farm constructor (the same is for the pipeline) is the one telling the run-time that the farm (or pipeline) has to be used as an accelerator. The idea is to start (or re-start) the accelerator and whenever we have a task ready to be submitted to the accelerator, we simply "offload" it to the accelerator. When we have no more tasks to offload, we send the End-Of-Stream and eventually we wait for the completion of the computation of tasks in the accelerator or, we can wait_freezing to temporary stop the accelerator without terminating the threads in order to restart the accelerator afterwards.

The bool load_result(void **) methods synchronously await for one item being delivered on the accelerator output stream. If such item is available, the method returns "true" and stores the item pointer in the parameter. If no other items will be available, the method returns "false". An asynchronous method is also available with signature bool load_results_nb(void **) When the method is called, if no result is available, it returns "false", and might retry later on to see whether a result is ready.

3.8 Examples

In this sections we consider an images filtering application in which 2 image filters have to be applied to a stream of images. We prove different possible FastFlow implementation using both pipeline and task-farm skeletons. The different implementations described in the following are sketched in Fig. 3.6 (all but versions img_farm2.cpp and img_farm3.cpp are reported as source code in this tutorial): the starting sequential implementation (img.cpp), a 4-stage FastFlow pipeline implementation (img.pipe.cpp), the same version as before but the pipeline (3-stage) is implemented as a "software accelerator" while the image reader stage is directly the main program (img.pipe2.cpp), a 4-stage FastFlow pipeline with the second and third stages implemented as task-farm skeletons (img.pipe+farm.cpp), a variant of the previous case, i.e. a 3-stage pipeline whose middle stage is a farm whose workers are 2-stage pipelines (img.farm+pipe.cpp), and finally the so called "normal-form", i.e. a single task-farm having the image reader stage collapsed with the farm Emitter and having the image writer stage collapsed with the farm collector (img.farm.cpp). The last 2 versions (not reported as source code here), i.e. img_farm2.cpp and img_farm3.cpp, are incremental optimizations of the base img_farm.cpp version.
in which the input and output is performed in parallel in the farm’s workers.

3.8.1 Images filtering

Let’s consider a simple streaming application: two image filters (blur and emboss) have to be applied to a stream of input images. The stream can be of any length and images of any size (and of different format). For the sake of simplicity images’ file are stored in a disk directory and the file names are passed as command line arguments of our simple application. The output images are stored with the same name in a separate directory.

The application uses the ImageMagick library\(^3\) to manipulate the images and to apply the two filters. In case the ImageMagick library is not installed, please refer to the “Install from Source” instructions contained in the project web site. This is our starting sequential program:

\(^3\)Project web site: http://www.imagemagick.org
char **itr = std::find(begin, end, option);
if (itr != end && ++itr != end) return *itr;
return nullptr;
}

int main(int argc, char *argv[]) {
 double radius = 1.0;
 double sigma = 0.5;
 if (argc < 2) {
 std::cerr << "use: " << argv[0] << " [-r radius=1.0] [-s sigma=.5] image-files\n"
 return -1;
 }
 int start = 1;
 char *r = getOption(argv, argv+argc, "-r");
 char *s = getOption(argv, argv+argc, "-s");
 if (r) {
 radius = atof(r);
 start +=2; argc--; } if (s) {
 sigma = atof(s);
 start +=2; argc--; } InitializeMagick(*argv);
 long num_images = argc-1;
 assert(num_images >= 1);
 // for each image apply the 2 filters in sequence
 for (long i=0; i<num_images; ++i) {
 const std::string &filepath(argv[start+i]);
 std::string filename;
 // get only the filename
 int n=filepath.find_last_of("/");
 if (n>0) filename = filepath.substr(n+1);
 else filename = filepath;
 Image img;
 img.read(filepath);
 img.blur(radius, sigma);
 img.emboss(radius, sigma);
 std::string outfile = "./out/" + filename;
 img.write(outfile);
 std::cout << "image " << filename
 << " has been written to disk\n"
 }
 return 0;
}

Since the two filters may be applied in sequence to independent input images,
we can compute the two filters in pipeline. So we define a 4-stage pipeline: the
first stage read images from the disk, the second and third stages apply the two
filters and the forth stage writes the resulting image into the disk (in a separate
directory). The code for implementing the pipeline is in the following:

/* *****************************/
/* img_pipe.cpp */
/* *****************************/
/*
 * Read --> Blur --> Emboss --> Write
 */

#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#include <ff/pipeline.hpp>
#include <Magick++-h>
using namespace Magick;
using namespace ff;

// this is the input/output task containing all information needed
struct Task {
 Task(Image *image, const std::string &name, double r=1.0, double s=0.5) :
 image(image),name(name),radius(r),sigma(s) {};
 Image *image;
 const std::string name;
 const double radius,sigma;
};

char* getOption(char **begin, char **end, const std::string &option) {
 char **itr = std::find(begin, end, option);
 if (itr != end && ++itr != end) return *itr;
 return nullptr;
}

// 1st stage
struct Read : ffnode<typename Task> {
 Read(char **images, const long num_images, double r, double s) :
 images((const char**)images), num_images(num_images), radius(r),
 sigma(s) {};
 Task *svc(Task *) {
 for (long i=0; i<num_images; ++i) {
 std::string filename;
 // get only the filename
 int n=filepath.find_last_of("/");
 if (n>0) filename = filepath.substr(n+1);
 else filename = filepath;
 Image *img = new Image;
 img->read(filepath);
 Task *t = new Task(img, filename, radius, sigma);
 ff_send_out(t); // sends the task t to the next stage
 }
 return EOS; // computation completed
 };
 const char **images;
 const long num_images;
 const double radius,sigma;
};

// function executed by the 2nd stage
Task* BlurFilter(Task *in, ffnode<const>){
 in->image->blur(in->radius, in->sigma);
 return in;
}

// function executed by the 3rd stage
Task* EmbossFilter(Task *in, ffnode<const>){
 in->image->emboss(in->radius, in->sigma);
 return in;
}

// function executed by the 4th stage
Task* Write(Task* in, ffnode<const>){
 std::string outfile = "./out/" + in->name;
 in->image->write(outfile);
 std::cout << "image " " has been written to disk\n";
 delete in->image;
 delete in;
 return (Task*)GO_ON;
}

int main(int argc, char *argv[]){
 if (argc < 2) {
 std::cerr << "use: " " [r radius=1.0] [-s sigma=.5] image-files\n";
 return -1;
 }
It is possible to instantiate the pipeline as a software accelerator. In the following we report only the code of the main function since it is the only part of the code that differs:

```c++
int main(int argc, char *argv[]) {
    if (argc < 2) {
        std::cerr << "use: " << argv[0] << " [ -r radius=1.0 ] [ -s sigma=0.5 ] image-files\n"
        << " running pipeline\n";
        return -1;
    }

    double radius=1.0, sigma=0.5;
    int start = 1;
    char *r = getOption(argv, argv+argc, "-r");
    char *s = getOption(argv, argv+argc, "-s");
    if (r) { radius = atof(r); start+=2; argc-=2; }
    if (s) { sigma = atof(s); start+=2; argc-=2; }

    InitializeMagick(*argv);
    long num_images = argc-1;
    assert(num_images >= 1);
    // 1st stage
    ff_node_F<Task> read(BlurFilter); // 2nd stage
    ff_node_F<Task> emboss(EmbossFilter); // 3rd stage
    ff_node_F<Task> write(Write); // 4th stage
    ff_Pipe<> pipe(true, // enable accelerator
                   blur, // 2nd stage
                   emboss, // 3rd stage
                   write); // 4th stage

    return 0;
}
```
if (pipe.run_then_freeze() < 0) { // start the pipeline
 error("running pipeline\n");
 return -1;
}
for (long i = 0; i < num_images; ++i) {
 const std::string &filepath(argv[start+i]);
 std::string filename;
 // get only the filename
 int n = filepath.find_last_of("/");
 if (n > 0) filename = filepath.substr(n+1);
 else filename = filepath;
 Image *img = new Image;
 img->read(filepath);
 Task *t = new Task(img, filename, radius, sigma);
 pipe.offload(t); // sends the task t to the pipeline
}
pipe.offload(EOS); // sends the End-Of-Stream
if (pipe.wait() < 0) { // wait for pipeline termination
 error("waiting pipeline\n");
 return -1;
}
return 0;
}

Now, since the same filter may be applied in parallel to independent input images, we can replace the second and third stage with two task-farm having the same previous stage as worker. This is safe because we know that we can replicate the function computing the filters: it is thread safe and has no internal shared state. The resulting code is:

```cpp
/* *****************************************************/
/* ************* img.pipe+farm.cpp ************* */
/* */
/* Read --> Sched --> Blur --> Emboss --> Write */
/* */
#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
#include <Magick++.h>
using namespace Magick;
using namespace ff;
struct Task {
  Task(Image *image, const std::string &name, double r = 1.0, double s = 0.5) :
    image(image), name(name), radius(r), sigma(s) {}
};
const double radius, sigma;
const double radius, sigma;
```

```cpp
typedef std::function<Task*(Task*, ff::node*, const)> ffFarm_f;
char* getOption(char **begin, char **end, const std::string &option) {
  char **itr = std::find(begin, end, option);
  if (itr != end & & ++itr != end) return *itr;
  return nullptr;
}
```

// 1st stage
struct Read: ff_node_t<Task> {
 Read(char **images, const long num_images, double r, double s) {
 images((const char**)images), num_images(num_images), radius(r),
 sigma(s) {};
 }
 Task *svc(Task *) {
 for (long i=0; i<num_images; ++i) {
 const std::string &filepath(images[i]);
 std::string filename;
 // get only the filename
 int n=filepath.find_last_of("/");
 if (n>0) filename = filepath.substr(n+1);
 else filename = filepath;
 Image *img = new Image;;
 img->read(filepath);
 Task *t = new Task(img, filename, radius, sigma);
 ff_send_out(t); // sends the task t to the next stage
 }
 return EOS; // computation completed
 }
};
// function executed by the 2nd stage
Task* BlurFilter(Task *in, ff_node*const) {
 in->image->blur(in->radius, in->sigma);
 return in;
}
// function executed by the 3rd stage
Task* EmbossFilter(Task *in, ff_node*const) {
 in->image->emboss(in->radius, in->sigma);
 return in;
}
// function executed by the 4th stage
Task *Write(Task* in, ff_node*const) {
 std::string outfile = "./out/" + in->name;
 in->image->write(outfile);
 std::cout << "image " << in->name << " has been written to disk\n";
 delete in->image;
 delete in;
 return (Task*)GO_ON;
}
// 4th stage
struct Writer: ff_minode_t<Task> { // this is a multi-input node
 Task *svc(Task *task) {
 return Write(task, this);
 }
};

int main(int argc, char *argv[]) {
 if (argc < 2) {
 std::cerr << "use: " << argv[0]
 << " [-r radius=1.0]"
 << " [-s sigma=0.5]"
 << " [-n blurWrk=2]"
 << " [-m embossWrk=2] image-files\n";
 return -1;
 }
 double radius=1.0, sigma=0.5;
 int blurWrk = 2, embossWrk = 2;
 int start = 1;
 char *r = getOption(argv, argc+argc, "-r");
 char *s = getOption(argv, argc+argc, "-s");
 char *n = getOption(argv, argc+argc, "-n");
}
char *m = getOption(argv , argv+argc , "-m") ;
if (r) { radius = atof(r) ; start+=2; argc -=2; }
if (s) { sigma = atof(s) ; start+=2; argc -=2; }
if (n) { blurWrk = atoi(n) ; start+=2; argc -=2; }
if (m) { embossWrk = atoi(m) ; start+=2; argc -=2; }

InitializeMagick(*argv);
long num_images = argc -1;
assert (num_images > = 1);

ff_Farm<Task> blurFarm(BlurFilter ,blurWrk) ;
blurFarm . remove_collector();
blurFarm . set_scheduling_on_demand();
if_Farm<Task> embossFarm(EmbossFilter ,embossWrk);
// this is needed because the previous farm does not has the Collector
embossFarm . setMultiInput();
embossFarm . remove_collector();
Read read(&argv [start] , num_images , radius , sigma);
Writer write ;
if_Pipe < > pipe (read , // 1st stage
blurFarm , // 2nd stage
embossFarm , // 3rd stage
write); // 4th stage
if (pipe . run_and_wait_end() <0) { // executes the pipeline
error("running pipeline\n");
return -1;
}
return 0;

A possible variant of the previous implementation, which uses only one scheduler is the following one:

/* ****** ****** img_farm+pipe.cpp ****** */

/*
4 *
5 * --> Blur --> Emboss
6 *
7 * Read --> Sched
8 *
9 * --> Blur --> Emboss
10 *
11 */

#ifndef _FF_IMAGE_PIPELINE_HPP
#define _FF_IMAGE_PIPELINE_HPP
#endif

#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
#include <Magick++.h>

namespace ff {
struct Task {
 Task (Image *image , const std::string &name , double r=1.0, double s =0.5) :
 image(image) , name(name) , radius(r) , sigma(s) {};

 Image *image ;
 const std::string name ;
 const double radius ;
 const double sigma ;
};
}

char *getOption(char **begin , char **end , const std::string &option) {
 char **itr = std::find(begin , end , option);
 /*
 */

}
if (itr != end && ++itr != end) return *itr;
return nullptr;
}

// 1st stage
struct Read : fnode_t<

Read(char **images, const long num_images, double r, double s) {
 images((const char**)images), num_images(num_images), radius(r),
 sigma(s) {}}

Task *svc(Task *) {
 for (long i=0; i<num_images; ++i) {
 const std::string &filename = images[i];
 std::cout << std::endl;
 }
 return EOS; // computation completed
};

// function executed by the 2nd stage
Task* BlurFilter(Task *in, fnode_t< const }) {
 in->image->blur(in->radius, in->sigma);
 return in;
}

// function executed by the 3rd stage
Task* EmbossFilter(Task *in, fnode_t< const }) {
 in->image->emboss(in->radius, in->sigma);
 return in;
}

// function executed by the 4th stage
Task* Write(Task *in, fnode_t< const }) {
 std::string outfile = "./out/" + in->name;
 in->image->write(outfile);
 std::cout << "image " " in->name " " has been written to disk\n";
 delete in->image;
 return (Task*)GO_ON;
}

// 4th stage
struct Writer : fninode_t<

writer(Task *task) {
 return Write(task, this);
};

int main(int argc, char *argv[]) {
 if (argc < 2) {
 std::cerr << "usage: " " argv[0]
 " [r radius=1.0]
 " [s sigma=.5"]
 " n Wrk=2] image-files\n";
 return -1;
 }
 double radius=1.0, sigma=0.5;
```c++
int Wrks = 2;
int start = 1;
char *r = getOption(argv, argv+argc, "-r");
char *s = getOption(argv, argv+argc, "-s");
char *n = getOption(argv, argv+argc, "-n");
if (r) { radius = atof(r); start += 2; argc -= 2; }
if (s) { sigma = atof(s); start += 2; argc -= 2; }
if (n) { Wrks = atoi(n); start += 2; argc -= 2; }

InitializeMagick(*argv);

long num_images = argc - 1;
assert(num_images >= 1);

std::vector<std::unique_ptr<ff_node>> W;
for (int i = 0; i < Wrks; ++i)
    W.push_back(make_unique<ff_node_F<Task>>(BlurFilter),
                make_unique<ff_node_F<Task>>(EmbossFilter));

ff_Farm<Task> farm(std::move(W));
farm.remove_collector(); // set auto scheduling
Read.read(&argv[start], num_images, radius, sigma);
Writer.write;
if_Pipe<> pipe(read, // 1st stage
             farm,  // 2nd stage
             write); // 3rd stage
if (pipe.run_and_wait_end() < 0) { // executes the pipeline
    error("running pipeline\n");
    return -1;
} else 
    return 0;
```

The next step is to reduce the number of resources used. For example the farm Emitter can be used to read files from the disk, whereas the farm Collector for writing files to the disk. Furthermore, the blur and emboss filters may be computed sequentially using a single workers. This is the so called "normal form" obtained optimising the resource usage. The code implementing the normal form is the following:

```c++
/* ************************************ */
/* ********* img_farm.cpp ***** */
/*
* * --> Blur+Emboss --
* Read+Sched --> Blur+Emboss --> Collector+Write
* --> Blur+Emboss --
*/
#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#define HAS_CXX11_VARIADIC_TEMPLATES 1
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
#include <Magick+++.h>
using namespace Magick;
using namespace ff;
struct Task {
    Task(Image *image, const std::string &name, double r=1.0, double s
```
struct ReadNode<
 Task>
{
 Read(char **images, const long num_images, double r, double s) :
 images((const char**)images), num_images(num_images), radius(r),
 sigma(s)
 {}

 Task *svc(Task *) {
 for (long i = 0; i < num_images; ++i) {
 const std::string &filename = filepath(images[i]);
 Image *img = new Image;
 img->read(filepath);
 Task *t = new Task(img, filename, radius, sigma);
 std::cout << "sending out " << filename << "\n";
 ff_send_out(t); // sends the task t to the next stage
 }
 return EOS; // computation completed
 }

 const char **images;
 const long num_images;
 const double radius, sigma;
};

// function executed by the 2nd stage
Task* BlurFilter(Task *in, ff_node<
 const>) {
 in->image->blur(in->radius, in->sigma);
 return in;
}

// function executed by the 3rd stage
Task* EmbossFilter(Task *in, ff_node<
 const>) {
 in->image->emboss(in->radius, in->sigma);
 return in;
}

struct BlurEmbossWrapper : ff_node<
 Task> {
 Task *svc(Task *task) {
 return EmbossFilter(BlurFilter(task, this), this);
 }
};

// function executed by the 4th stage
Task *Write(Task *in, ff_node<
 const) {
 std::string outfile = "./out/" + in->name;
 in->image->write(outfile);
 std::cout << "image " << in->name << " has been written to disk\n";
 delete in->image;
 delete in;
 return (Task*)GO_ON;
}

// 4th stage
struct Writer : f f

 Task *svc(Task *task) {
 return Write(task, this);
 }

int main(int argc, char *argv[]) {
 if (argc < 2) {
 std::cerr << " use: " << argv[0] << " [−rradius =1.0]"
 << " [−s sigma =.5]"
 << " [−n Wrks =2]"
 << " [−m Wrk =2] image−files \n"
 return −1;
 }
 double radius =1.0, sigma =0.5;
 int Wrks =2;
 int start =1;
 char *r = getOption(argv, argv + argc, "−r");
 char *s = getOption(argv, argv + argc, "−s");
 char *n = getOption(argv, argv + argc, "−n");
 if (r) { radius = atof(r); start +=2; argc −=2; }
 if (s) { sigma = atof(s); start +=2; argc −=2; }
 if (n) { Wrks = atoi(n); start +=2; argc −=2; }

 InitializeMagick(*argv);

 std::vector<std::unique_ptr<ff_node>> W;
 for (int i =0; i<Wrks; ++i)
 W. push_back(make_unique<BlurEmbossWrapper>())
 Read read(&argv[start], num_images, radius, sigma);
 Writer writer;
 ff_Farm<Task> farm(std::move(W), read, writer);
 farm.set_scheduling_on_demand();
 if (farm.run_and_wait_end() < 0) { // executes the task−farm
 error(" running pipeline\n");
 return −1;
 }
 return 0;
}
Chapter 4

Data parallelism

In data parallel computation, data structures (typically large) are partitioned among the number of concurrent resources each of which computes the same function on the assigned partition. In a nutshell, the input task, possibly but not necessarily coming from an input stream, is split into multiple sub-task each one computed in parallel and then collected together in one single output task. The computation on the sub-tasks may be completely independent (i.e. the sub-task computation uses data only coming from the the current sub-task) or dependent on previously computed data (non necessarily in the corresponding sub-task). The main goal of data parallel computation is to reduce the completion time of the single task to compute. It is important to note that, data decomposition using large sub-tasks, together with static assignment of such partitions to workers, may introduce load imbalance during the computation mainly because of the variable calculation time associated to distinct partitions. In general, it is possible to state that load balancing is a feature of anonymous task assignment, i.e. tasks to be computed are dynamically assigned to available computing resources, without a-priori correspondence between tasks and available computing resources. The task-farm paradigm is naturally based on this concept (where tasks are stream items), and for this reason quite often data-parallel computations are implemented on top of the task-farm skeleton by using the auto-scheduling policy (see Sec. 3.3). Many other scheduling strategies have been devised for balancing data-parallel computations, among these, the work-stealing scheduling strategy is of particular importance. It is worth to note here that, when the task-farm is used to implement an unbalanced data parallel computation, it is possible to "customise" it to use a work-stealing scheduling strategy. In other words, the task-farm pattern just models functional replication, while data partitioning and task-scheduling depends on the way the Emitter entity is implemented.

Well known and widely used data parallel skeletons are: map reduce and stencil.
4.1 Data parallel skeletons

In this section we describe map-like and reduce-like patterns, whereas the stencil pattern is not covered.

map

The simplest data parallel computation is the map, in which the concurrent workers operating on a partition of the input data structure (typically an N-dimensional array) are fully independent, i.e. each of them operates on its own local data only, without any cooperation with other computing resources. As an example consider the following piece of code:

```c
const size_t N = 1<<15;
long A[N], B[N];
for (size_t i = 1; i < N; ++i)
    A[i-1] = F(B[i]);
A[N-1] = F(B[0]);
```

If the function F has no internal state, each loop iteration may be computed independently since there are no true dependency among iterations. In this case we may apply the map pattern, splitting the two arrays A, B in $n = \frac{N}{n_{\text{workers}}}$ parts and assign each part to one worker. Each worker executes the same loop as above on a restricted index range. In principle, the execution time can be reduced by a factor of n if we consider a run-time with zero overhead, and as a particular case, if $n_{\text{workers}} = N$, the execution time is reduced from $O(N)$ to $O(1)$. It is worth to note that, the map skeleton may be simply implemented using a task-farm skeleton operating on a single input data. The Emitter split the input arrays and distributes the partitions to each worker. The workers apply the function F on the input partition, finally the Collector collects the workers’ partitions in one single output task.

Loop-parallelism

A sequential iterative kernel with independent iterations is also known as a parallel loop. Parallel loops may be clearly parallelized by using the map or farm skeletons, but this typically requires a substantial re-factoring of the original loop code with the possibility to introduce bugs and not preserving sequential equivalence. Furthermore, the selection of the appropriate implementation skeleton together with a correct implementation of the sequential wrapper code is of foremost importance for obtaining the best performance.

For these reasons, in the FastFlow framework there are a set of data parallel patterns implemented on top of the basic FastFlow skeletons to ease the implementation of parallel loops.

4.2 FastFlow abstractions

In this section we describe the different parallel-for abstractions that are used to implement almost all data-parallel skeletons currently available in the FastFlow
framework for multi-core systems.

4.2.1 ParallelFor

Here we introduce the FastFlow ParallelFor pattern that can be used to parallelize loops having independent iterations:

for(long idx=first; idx < last; idx += step) bodyF;

The class interface of the ParallelFor pattern is described in the parallel_for.hpp file. The constructor accepts two parameters:

ParallelFor(const long maxnworkers=FF_AUTO, bool spinWait=false);

the first parameter sets the maximum number of worker threads that can be used in the ParallelFor (that is the maximum concurrency degree), the second argument sets non-blocking run-time for parallel computations. At the beginning you may just leave the default parameters for these two arguments.

The ParallelFor object, encapsulates a number of parallel_for methods, which differentiate each other for the number of arguments they get and for the signatures of the function body. A single ParallelFor object can be used as many times as needed to run different parallel-for instances (different loop bodies). Nested invocations of ParallelFor methods are not supported.

The loop body may be a standard function or a C++11 lambda-function. A C++11 lambda-function is a new feature of the C++11 standard already supported by many compilers. They are unnamed closures (i.e. function objects that can be constructed and managed like data) that allow functions to be syntactically defined where and when needed. When lambda functions are built, they can capture the state of non-local variables named in the wrapped code either by value or by reference.

The following list presents the most useful parallel-for methods provided by the ParallelFor class:

parallel_for(first, last, bodyF, nworkers);// step=1, grain=FF_AUTO
parallel_for(first, last, step, bodyF, nworkers);// grain=FF_AUTO
parallel_for(first, last, step, grain, bodyF, nworkers);
bodyF = F(const long idx);

parallel_for_thid(first, last, step, grain, bodyF, nworkers);
bodyF = F(const long idx, const int thid); // thid is the id of the thread executing the body function

parallel_for_idx(first, last, step, grain, bodyF, nworkers);
bodyF = F(const long begin, const long end, const int thid);

Now, given the following sequential loop:

auto F = [] (const long i) { return i*i; }
for(long i=1; i < 100; i +=2) A[i] = F(i);

we can write the following parallel-for:

ParallelFor pf;
auto F = [] (const long i) { return i*i; }
pf.parallel_for(1,100,2,&A)(const long i) { A[i]=F(i);});
or by using the `parallel_for_idx` we have:

```cpp
ParallelFor pf;
auto F = [] (const long i) { return i*i; }
pf.parallel_for_idx(1,100,2,[&A](const long begin, const long end, const int thid) {
    std::cout << "Hello I'm thread " << thid << " executing iterations (" << begin <<"," << end <<")\n";
    for(long i=begin; i<end; i += 2) A[i]=F(i);
});
```

the `parallel_for_idx` is just a "low-level" version of the `parallel_for`, where the internal loop, iterating over all iterations assigned to the worker, has to be written directly by the user. This may be useful when it is needed to execute a pre-computation (executed in parallel) before starting the execution of the loop iterations, or in general for debugging purposes.

It is important to remark that, when `spinWait` is set to `true` (see Sec. 4.2.1 for details), in some particular cases, the body function is called the first time with `begin==end==0` so it would be safe to test this condition at the beginning of the `parallel_for_idx` (i.e. `if (begin==end) return;`).

Let's now see a very simple usage example of the `parallel_for`:

```cpp
#include <ff/parallel_for.hpp>
using namespace ff;

int main(int argc, char *argv[]) {
    assert(argc>1);
    long N = atol(argv[1]);
    long *A = new long[N];
    ParallelFor pf;
    // initialize the array A
    pf.parallel_for(0,N,[&A](const long i) { A[i]=i;});
    // do something on each even element of the array A
    pf.parallel_for(0,N/2,[&A](const long i) { A[i]=i*i;});
    // print the result
    for(long i=0; i<N; i++) std::cout << A[i] << " ";
    std::cout << "\n";
    return 0;
}
```

In this case, first the array A has been initialised using a parallel-for and then the square value of the even entries is computed in parallel over \(N/2 \) iterations.

Iterations scheduling

Three distinct iteration schedulings are currently possible in parallel-for computations:

1. **default static scheduling**: the iteration space is (almost) evenly partitioned in large contiguous chunks, and then they are statically assigned to workers, one chunk for each worker.

2. **static scheduling with interleaving** \(k \): the iteration space is statically divided among all active workers in a round-robin fashion using
a stride of k. For example, to execute 10 iterations (from 0 to 9) using a concurrency degree of 2 and a stride $k = 3$, then the first thread executes iterations 0, 1, 2, 6, 7, 8 and the second thread executes iterations 3, 4, 5, 9. The default static scheduling is obtained setting a stride $k = \text{iterationspace/}n\text{workers}$.

3. **dynamic scheduling with chunk k**: in this case no more than k contiguous iterations at a time are dynamically assigned to computing workers. As soon as a worker completes computation of one chunk of iterations, a new chunk (if available) is selected and assigned to the worker. The run-time tries to select as many as possible contiguous chunks in order to better exploit spatial locality. This allows to have a good trade-off between iterations affinity and load-balancing.

By default the **default static scheduling** is used. In general, the scheduling policy is selected by specifying the `grain` parameter of the `parallel_for` method. If the `grain` parameter is not specified or if its value is 0, then the **default static scheduling** is selected. If `grain` is greater than zero, then the **dynamic scheduling** is selected with $k = \text{grain}$. Finally, to use the **static scheduling with interleaving k** the `parallel_for_static` method must be used with $k = \text{grain}$. Note that, if in the `parallel_for_static` the `grain` parameter is zero, than the **default static scheduling** policy is selected.

Summarising, in the following different scheduling strategies are selected according to the `grain` parameter:

```plaintext
pf.parallel_for(1,100,2, bodyF); // default static sched.
pf.parallel_for(1,100,2, 0, bodyF); // default static sched.
pf.parallel_for(1,100,2,10, bodyF); // dynamic sched. with k=10
pf.parallel_for_static(1,100,2,10, bodyF); // static sched.
                    // interleaving k=10
pf.parallel_for_static(1,100,2,0, bodyF); // default static sched.
```

threadPause and **disableScheduler**

The `spinWait` parameter in the `ParallelFor` constructor enables non-blocking computation between successive calls of `parallel_for` methods. This means that if the parallel-for is not destructed and not used for a while, the worker threads will be active in a busy waiting loop. In this case it may be useful to "pause" the threads until the parallel-for pattern is used again. To attain this, the `threadPause` method can be used. The next time the parallel-for is used, the non-blocking run-time will be still active.

Another interesting option of the `ParallelFor` object, is the possibility to switch between two distinct run-time support for the scheduling of loop iterations:

1. **active scheduling** where an active non-blocking scheduler thread (the farm’s Emitter) is used to implement the **auto-scheduling** policy;
2. **passive scheduling** where workers cooperatively schedule tasks via non-blocking synchronisations in memory.

Which one is better? It is difficult to say, as it depends on many factors: parallelism degree, task granularity and underlying platform, among others. As a rule of thumb, on large multi-core and with fine-grain tasks active scheduling typically runs faster; on the other hand, when there are more threads than available cores the passive scheduler allows reduction of CPU conflicts obtaining better performance.

By default, if the number of active workers is less than the number of available cores, than the active scheduling is used. To dynamically switch between active (false) and passive (true) scheduling strategies the disableScheduler method can be used.

4.2.2 ParallelForReduce

The FastFlow ParallelForReduce is used to perform a parallel-for computation plus a reduction operation (by using a combiner function named reduceF in the following) over a sequence of elements of type T. In order to deterministically compute the result, the reduction function needs to be associative and commutative.

The constructor interface is:

```
ParallelForReduce<T>(const long max=FF_AUTO,bool spinwait=false);
```

where the template type T is the type of the reduction variable, the first parameter sets the maximum number of worker threads that can be used in the ParallelForReduce, the second argument sets non-blocking run-time.

The ParallelForReduce class provides all the parallel-for methods already provided by the ParallelFor class and a set of additional parallel_reduce methods:

```
parallel_reduce(var,identity, first,last,
    bodyF, reduceF, nworkers);// step=1,grain=FF_AUTO
parallel_reduce(var,identity, first,last,step,
    bodyF, reduceF, nworkers);// grain=FF_AUTO
parallel_reduce(var,identity, first,last,step,grain,
    bodyF, reduceF, nworkers);
bodyF =F(const long idx,T& var);
reduceF =R(T& var,const T& elem);
```

```
parallel_reduce_thid(var,identity, first,last,step,grain,
    bodyF, reduceF, nworkers);
bodyF =F(const long idx,T& var,const int thid);
reduceF =R(T& var,const T& elem);
// thid is the id of the thread executing the body function
```

```
parallel_reduce_idx(var,identity, first,last,step,grain,
    bodyF, reduceF, nworkers);
bodyF =F(T& var,const long begin,const long end,const int thid);
reduceF =R(T& var,const T& elem);
```
The `reduceF` function specified in all `parallel_reduce` methods, executes the reduction operation. As an example, let’s consider the simple case of the sum of array’s elements:

```cpp
#include <iostream>
#include <ff/parallel_for.hpp>
using namespace ff;
const size_t SIZE = 1 << 20;
int main(int argc, char * argv[]) {
    assert(argc > 1);
    int nworkers = atoi(argv[1]);
    // creates the array
    double *A = new double[SIZE];
    ParallelForReduce<double> pfrr(nworkers);
    // fill out the array A using the parallel−for
    pfrr.parallel_for(0, SIZE, 1, 0, [](const long j) { A[j] = j * 1.0; });
    auto reduceF = [] (double& sum, const double elem) { sum += elem; };
    auto bodyF = [&A] (const long j, double& sum) { sum += A[j]; };
    {
        double sum = 0.0;
        std::cout << "Computing sum with " << std::max(1, nworkers / 2) << " workers, default static scheduling" << std::endl;
        pfrr.parallel_reduce(sum, 0.0, 0L, SIZE, bodyF, reduceF, std::max(1, nworkers / 2));
    }
    {
        double sum = 0.0;
        std::cout << "Computing sum with " << nworkers << " workers, static scheduling with interleaving 1000";
        pfrr.parallel_reduce_static(sum, 0.0, 0L, SIZE, 1, 1000, bodyF, reduceF, nworkers);
    }
    {
        double sum = 0.0;
        std::cout << "Computing sum with " << nworkers−1 << " workers, dynamic scheduling chunk=1000";
        pfrr.parallel_reduce(sum, 0.0, 0L, SIZE, 1, 1000, bodyF, reduceF, nworkers);
    }
    delete [] A;
    return 0;
}
```

In this simple test, we used a parallel-for for initialising the array A, and 3 `parallel_reduce` calls for computing the final sum (the reduction variable) using the default static scheduling, the static scheduling with interleaving and the dynamic scheduling, respectively.

4.2.3 `ParallelForPipeReduce`

The `ParallelForPipeReduce` uses a different skeleton implementation of the `ParallelForReduce` pattern. The `ParallelForPipeReduce` computes a `map` function and a sequential `reduce` function in a `pipeline` fashion.

This pattern is useful in cases in which the reduce function has to be computed sequentially, for example because there are concurrent write accesses in
some memory locations (so they have to be serialised using a lock). In these
cases, the typical solution is to execute the map part (for example using a
parallel-for) and then when the map is completed, execute the reduce part se-
quently and this may be expensive because a full barrier (between the map
and the reduce) is required. The ParallelForPipeReduce pattern allows
execution of the map and reduce part in pipeline without any barriers.

The ParallelForPipeReduce pattern is more complex to use than the
ParallelForReduce pattern because it requires to explicitly send the tasks to
the reduce stage inside the body of the map function. The ParallelForPipeReduce
class defined in the parallel_for.hpp file provides only 2 parallel-for meth-
ods:

```
parallel_for_idx(first, last, step, grain,
    mapF, nworkers);
mapF = F(const long begin, const long end, const int thid,
    ff_buffernode& node);
```

```
parallel_reduce_idx(first, last, step, grain,
    mapF, reduceF, nworkers);
mapF = F(const long begin, const long end, const int thid,
    ff_buffernode& node);
reduceF = R(T& var);
```

As an example, let’s consider the same simple case implemented in the pre-
vious section, i.e. the computation of the sum of array’s elements:

```
#include <ff/parallel_for.hpp>

using namespace ff;

const size_t SIZE = 1 << 20;

int main (int argc, char * argv[]) {
    assert(argc > 1);
    int nworkers = atoi(argv[1]);

    ParallelForPipeReduce<double> pfpipe(nworkers, true);

    double *A = new double[SIZE];

    pfpipe.parallel_for_idx(0, SIZE, 1, 0,
        [&A](const long start, const long stop, const int thid, ff_buffernode &node) {
            for(long j=start; j<stop; ++j) A[j] = j * 1.0;
        });

    double sum = 0.0;

    auto mapF = [&A](const long start, const long stop, const int thid, ff_buffernode &node) {
        // needed to avoid sending spurious lsum values to the reduce stage
        // if (start==stop) return;
        double *lsum = new double(0.0); // allocate a task to send
        for(long i=start;i<stop;++i) *lsum += A[i];
        node.put(*lsum); // sending the partial sum to the next reduce stage
    };

    auto reduceF = [&sum](double *lsum) { sum += *lsum; delete lsum; };

    pfpipe.parallel_reduce_idx(0, SIZE, 1, 0, mapF, reduceF);

    std::cout << "Computing sum with " << nworkers " workers, using the ParallelForPipeReduce and default sched.\n";

    return 0;
}
```
4.2.4 \textit{ff_Map}

The FastFlow map parallel pattern is implemented as an \textit{ff_node_t} abstraction and a \textit{ParallelForReduce} pattern. The idea is that, the map pattern is just an interface to a parallel-for on multi-core platforms, while it provides a simple abstraction for targeting multi-GPGPUs (both OpenCL and CUDA) and, in the future versions, FPGAs on many-core platforms. The \textit{ff_Map\langle S,T \rangle} is a template class accepting three template parameters: the first two are the type of the input-output task (i.e. the template parameter of the \textit{ff_node_t\langle IN,OUT \rangle} class); the second one (optional) is the type of the \textit{ParallelForReduce\langle T \rangle} class.

Since the \textit{ff_map} pattern is an \textit{ff_node} derived object, it may be used as a pipeline stage and as a farm worker.

```cpp
/* ********************************************************** */
/* ******** hello_map.cpp ******** */
#include <ff/parallel_for.hpp>
#include <ff/pipeline.hpp>
#include <ff/farm.hpp>
#include <ff/map.hpp>
using namespace ff;
const long SIZE = 100;
typedef std::pair<std::vector<long>, std::vector<long>> fftask_t;
struct mapWorker : ff\_Map<ff\_task_t>
{
  fftask_t* svc(ff\_task_t* task)
  {
    task->first.resize(SIZE);
    task->second.resize(SIZE);
    const int myid = get\_my\_id();
    ff\_Map<ff\_task_t>::parallel\_for(0, SIZE, [myid, &task](const long i) {
      task->first[i] = i + myid;
      task->second[i] = SIZE - i;
    }, 3);
    ff\_send\_out(task);
    return EOS;
  }
};
struct mapStage : ff\_Map<ff\_task_t>
{
  mapStage(): ff\_Map<ff\_task_t>(ff\_real\_Num\_Cores()) {}
  // this is the parallel\_for provided by the ff\_Map class
  ff\_Map<ff\_task_t>::parallel\_for(0, SIZE, [&task][const long i] {
    task->first[i] += task->second[i];
  });
  for(size_t i=0;i<SIZE;++i)
    std::cout << task->first[i] << " ";
  std::cout << "\n";
  return GO\_ON;
};
int main()
{
  std::vector<ff\_node> W;
  W.push\_back(make\_unique<mapWorker>(()));
  W.push\_back(make\_unique<mapWorker>(()));
  ff\_Farm<ff\_task_t> farm(std::move(W));
  mapStage stage;
  ff\_Pipe<ff\_task_t> pipe(farm, stage);
  if (pipe.run\_and\_wait\_end() < 0)
    error("running pipe");
  return 0;
}
```
in the above test, we have a pipeline of two stage, the first stage is a task-farm having two workers defined as map, the second stage is a map. The farm’s workers initialise and generate in the output stream pairs of vector, the single pair of vector is summed in the second stage.

Why use the ff_Map instead of using directly a ParallelFor in a sequential ff_node? The big difference is in the fact that in case of ff_Map the run-time knows that the ff_node is internally parallel whereas if the parallel-for is used inside the svc method of a sequential ff_node this information is completely transparent to the FastFlow run-time thus not allowing any kind of optimisation (as for example, removing the scheduler or applying a better thread-to-core mapping).

4.3 Examples

4.3.1 Matrix multiplication

Let’s consider the standard ijk matrix multiplication algorithm. We have three nested loops that can be potentially parallelised (note that the internal k-loop is not a plain parallel for loop). In the following code we apply the ParallelFor pattern to the outermost loop (i-loop).

```cpp
#include <cassert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#include <ff/parallel_for.hpp>
using namespace ff;

int PFWORKERS = 1; // parallel_for parallelism degree
int PFGRAIN = 0; // default static scheduling of iterations

void random_init (long M, long N, long P, double *A, double *B) { }

void seqMatMult (long m, long n, long p,
                 const double *A, const long AN,
                 const double *B, const long BN,
                 double *C, const long CN) {
  for (long i = 0; i < m; i++)
    for (long j = 0; j < n; j++) {
      C[i*CN+j] = 0.0;
      for (long k = 0; k < p; k++)
        C[i*CN+j] += A[i*AN+k]*B[k*BN+j];
    }
}

void PFMatMultI (long m, long n, long p,
                 const double *A, const long AN,
                 const double *B, const long BN,
                 double *C, const long CN) {
  ParallelFor pf(PFWORKERS);
  pf.parallel_for (0,m,[A,B,CN,AN,BN,p,n,&C])(const long i) {
```
for (long j = 0; j < n; j++) {
 C[i*CN+j] = 0.0;
 for (long k = 0; k < p; k++) {
 C[i*CN+j] += A[i*AN+k]*B[k*BN+j];
 }
}
} // it uses all PFWORKERS

int main(int argc, char* argv[]) {
 if (argc < 4) {
 printf("%s M N P pfworkers:chunksize [check=0]\n", argv[0]);
 printf("A is M by P\n");
 printf("B is P by N\n");
 printf("check !=0 executes also the sequential ijk loops for checking the result\n\n");
 return -1;
 }
 long M = parse_arg(argv[1]);
 long N = parse_arg(argv[2]);
 long P = parse_arg(argv[3]);
 if (argc >= 5) {
 std::string pfarg(argv[4]);
 int n = pfarg.find_first_of(":");
 if (n>0) {
 PFWORKERS = atoi(pfarg.substr(n+1).c_str());
 PFGRAIN = atoi(pfarg.substr(n+1).c_str());
 } else PFWORKERS = atoi(argv[5]);
 }
 if (argc >= 6) check = (atoi(argv[5])?true:false);
 const double *A = (double*)malloc(M*P*sizeof(double));
 const double *B = (double*)malloc(P*N*sizeof(double));
 assert(A); assert(B);
 random_init(M, N, P, const_cast<double*>(A), const_cast<double*>(B));
 double *C = (double*)malloc(M*N*sizeof(double));
 PFMatMultI(M, N, P, A, P, B, N, C);
 free((void*)A); free((void*)B); free(C);
 return 0;
}

4.3.2 Dot product

The "dot" product is a simple example of a map pattern combined with a reduction operation. The map is the initial pair wise multiplication of vector elements, and the reduction is the summation of the results of that multiplication.

More formally, given two arrays A and B each with n elements, the dot product $A \times B$ is the resulting scalar given by $\sum_{i=0}^{n-1} A[i] \times B[i]$.

```cpp
/* **********************************************/
/* ************ dotprod.cpp ****** */
#include <iostream>
#include <iomanip>
#include <ff/parallel_for.hpp>
using namespace ff;
int main(int argc, char* argv[]) {
    if (argc < 5) {
        printf("%s M N P pfworkers:chunksize [check=0]\n", argv[0]);
        printf("A is M by P\n");
        printf("B is P by N\n");
        printf("check !=0 executes also the sequential ijk loops for checking the result\n\n");
        return -1;
    }
    long M = parse_arg(argv[1]);
    long N = parse_arg(argv[2]);
    long P = parse_arg(argv[3]);
    if (argc >= 5) {
        std::string pfarg(argv[4]);
        int n = pfarg.find_first_of(":");
        if (n>0) {
            PFWORKERS = atoi(pfarg.substr(n+1).c_str());
            PFGRAIN = atoi(pfarg.substr(n+1).c_str());
        } else PFWORKERS = atoi(argv[5]);
    }
    if (argc >= 6) check = (atoi(argv[5])?true:false);
    const double *A = (double*)malloc(M*P*sizeof(double));
    const double *B = (double*)malloc(P*N*sizeof(double));
    assert(A); assert(B);
    random_init(M, N, P, const_cast<double*>(A), const_cast<double*>(B));
    double *C = (double*)malloc(M*N*sizeof(double));
    PFMatMultI(M, N, P, A, P, B, N, C);
    free((void*)A); free((void*)B); free(C);
    return 0;
} 
```


std::cerr << "use: " << argv[0] << " ntimes size pworkers G\n";
std::cerr << " example:\n " << argv[0] << " 2 100000 8 0\n";
return -1;

const double INITIAL_VALUE = 1.0;
int NTIMES = atoi(argv[1]);
long arraySize = atol(argv[2]);
int nworkers = atoi(argv[3]);
long chunk = atol(argv[4]);

assert (nworkers > 0); assert (arraySize > 0);

// creates the array
double *A = new double[arraySize];
double *B = new double[arraySize];

ParallelForReduce<double> pfr(nworkers, true);

// initialize the arrays A and B
pfr.parallel_for (0, arraySize, 1, chunk, [&A,&B](const long j){
 A[j]=j*3.14; B[j]=2.1*j;
});

// final reduce function
auto Fsum = [](double & v, const double & elem) { v += elem; };

double sum; // reduction variable
for(int z=0;z<NTIMES;++z) { // repeats the computation NTIMES
 sum = INITIAL_VALUE;
 pfr.parallel_reduce (sum, 0.0, 0, arraySize, 1, chunk,
 [&A,&B](const long i, double & sum) { sum += A[i]*B[i];
 }, Fsum);
}

std::cout << "Result = " << std::setprecision(10) << sum << "\n";
delete [] A; delete [] B;
return 0;

4.3.3 Mandelbrot fractal

A Mandelbrot set \(M \), is defined by the set of complex numbers \(c \) such that:

\[
M = \{ c : |M_k(c)| < \infty, \forall k \in \mathbb{N} \}
\]

where

\[
\begin{align*}
M_0(c) &= 0 \\
M_{k+1}(c) &= M_k(c)^2 + c
\end{align*}
\]

A point \(c \) belongs to the Mandelbrot set if and only if:

\[
|M_k(c)| \leq 2, \forall k \in \mathbb{N}
\]

The following program, which uses the ParallelForPipeReduce pattern for both computing the set line by line (Map part) and for displaying the line just computed (Reduce part), displays the Mandelbrot set in a X window. The result is shown in Fig 4.1.

#include <iostream>

/ * **************************** */
/ * ****** mandel.cpp ****** */
4 #include <iostream>

54
```cpp
#include <cstdio>
#include <cmath>
#include <cassert>
#include "lib/marX2.h"

const int DIM = 800; // default dimension
const int ITERATION = 1024; // default iteration
const double init_a = -2.125, init_b = -1.5, range = 3.0;

using namespace std;

struct ostream_t {
    ostream_t (const int dim) : M(dim), line(-1) {}
    std::vector<unsigned char> M;
    int line;
};

int main(int argc, char **argv) {
    int dim = DIM, niter = ITERATION, retries = 1, nworkers, chunk=0;
    bool scheduler = true;
    if (argc < 3) {
        printf("Usage: %s <workers> <size> [iterations=1024] [retries=1] [chunk=0] [0|1]\n", argv[0]);
        return -1;
    }
    nworkers = atoi(argv[1]);
    dim = atoi(argv[2]);
    if (argc>=4) niter = atoi(argv[3]);
    if (argc>=5) retries = atoi(argv[4]);
    if (argc>=6) chunk = atoi(argv[5]);
    if (argc>=7) scheduler = atoi(argv[6]);
    double step = range/(double)dim;
```
4.3.4 Sobel filter

Let’s consider a very simple usage example in which the \texttt{ff_map} is used as pipeline stage for computing the Sobel filter (see Fig. 4.2) on a stream of input images. The first stage reads image from disk, allocates memory and then sends a task to the second stage (the Map one) which computes the Sobel filter in
parallel using a parallel-for. Finally the image is written into the local disk. In
the following code we used OpenCV\(^1\) for reading and writing images and for
converting them to grayscale.

\begin{verbatim}
/* **/
/* ******** ffsobel.cpp ***** */
#include<cmath>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#include <ff/pipeline.hpp>
#include <ff/map.hpp>
using namespace ff;
using namespace cv;
const int MAP_WORKERS=2;
/* my task */
struct Task {
 Task(uchar *src, uchar *dst, long rows, long cols, const std::string &name) :
 src (src), dst (dst), rows (rows), cols (cols), name(name) {};
 uchar *src, *dst;
 long rows, cols;
 const std::string name;
};
/
/* utility function -------- */
template<typename T>
T *Mat2uchar(cv::Mat &in) {
 T *out = new T[in.rows * in.cols];
 for (int i = 0; i < in.rows; ++i)
 for (int j = 0; j < in.cols; ++j)
 out[i * (in.cols) + j] = in.at<T>(i, j);
 return out;
}
/* */
char* getOption(char **begin, char **end, const std::string &option) {
 char **itr = std::find(begin, end, option);
 if (itr != end && ++itr != end) return *itr;
 return nullptr;
}
#define XY2I(Y,X,COLS) (((Y) * (COLS)) + (X))
\end{verbatim}
\(^{1}\)Project web site: http://www.opencv.org
// returns the gradient in the x direction
static inline long xGradient(uchar *image, long cols, long x, long y) {
 return image[XY2I(y−1, x−1, cols)] +
 2*image[XY2I(y, x−1, cols)] +
 image[XY2I(y+1, x−1, cols)] -
 2*image[XY2I(y, x+1, cols)] -
 image[XY2I(y+1, x+1, cols)];
}
// returns the gradient in the y direction
static inline long yGradient(uchar *image, long cols, long x, long y) {
 return image[XY2I(y−1, x−1, cols)] +
 2*image[XY2I(y−1, x, cols)] +
 image[XY2I(y−1, x+1, cols)] -
 2*image[XY2I(y+1, x, cols)] -
 image[XY2I(y+1, x+1, cols)];
}
// 1st stage
struct Read : ff_node_t<Task> {
 Read(char **images, const long num_images) :
 images((const char**)images), num_images(num_images) {}
 Task *svc(Task *) {
 for(long i=0; i<num_images; ++i) {
 const std::string &filename = filepath(images[i]);
 // get only the filename
 int n=filepath.find_last_of("/");
 if (n>0) filename = filepath.substr(n+1);
 else filename = filepath;
 Mat *src = new Mat;
 *src = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
 if (!src->data) {
 error("reading image file %s, going on...", filename.c_str());
 delete src;
 continue;
 }
 uchar * dst = new uchar[src->rows * src->cols];
 for(long y = 0; y < src->rows; y++)
 for(long x = 0; x < src->cols; x++) {
 dst[y * src->cols + x] = 0;
 }
 Task *t=new Task(Mat2uchar<uchar>(*src), dst, src->rows, src->cols, filename);
 ff_send_out(t); // sends the task t to the next stage
 }
 return EOS; // computation completed
 }
 const char **images;
 const long num_images;
};
// 2nd stage
struct SobelStage : ff_Map<Task> {
 // sets the maximum n. of worker for the Map
 // spinWait is set to true
 // the scheduler is disabled by default
 int nw;
 SobelStage(int mapworkers) :
 ff_Map<Task>(mapworkers, true) {nw=mapworkers;}
 Task *svc(Task *task) {
 uchar * src = task->src, * dst = task->dst;
 long cols = task->cols;
 }
}
```
ff_M<Task>::parallel_for (1, task->rows-1,[src, cols,& dst] const long y)
{
  for (long x = 1; x < cols - 1; x++){
    const long gx = xGradient (src, cols, x, y);
    const long gy = yGradient (src, cols, x, y);
    // approximation of sqrt(gx^2 + gy^2)
    long sum = abs(gx) + abs(gy);
    if (sum > 255) sum = 255;
    else if (sum < 0) sum = 0;
    dst[y*cols+x] = sum;
  }
}
const std::string & outfile = "./out/" + task->name;
imwrite (outfile, cv::Mat(task->rows, task->cols, CV_8U, dst, cv::Mat::AUTO_STEP));
delete task->src; delete [] task->dst; delete task;
return GO_ON;
};

int main (int argc, char *argv[]) {
  if (argc < 2) {
    std::cerr << "\nuse: " << argv[0]
    " [-m <Wrks=2>] <image-file> [image-file]\n";
    std::cerr << " Wrks2 is the n. of map's workers\n\n";
    return -1;
  }
  int start = 1;
  int Wrks = MAPWORKERS;
  char *m = getOption (argv, argv+argc, "-m");
  if (m) {
    Wrks = atoi (m); start+=2; argc-=2;
  }
  long num_images = argc-1;
  assert (num_images >= 1);
  Read reader(kargv[start], num_images);
  SobelStage sobel(Wrks);
  if (pipe <> pipe(reader, sobel))
    if (pipe.run_and_wait_end() < 0)
      error ("running pipeline\n");
    return -1;
  }
  return 0;
}
Chapter 5

Data-flow parallelism

The data-flow programming model is a general approach to parallelization based upon data dependencies among a program’s operations. Its theoretical and methodological value is quite fundamental in parallel processing.

The computations is expressed by the data-flow graph, i.e. a DAG whose nodes are instructions and arcs are pure data dependencies.

If instead of simple instructions, portions of code (sets of instructions or functions) are used as graph’s nodes, then it is called the macro data-flow model (MDF). The resulting MDF program is therefore represented as a graph whose nodes are computational kernels and arcs read-after-write dependencies. It is worth noting that, the data-flow programming model is able to work both on stream of values and on a single value. For this reason, it is considered somehow a primitive model of computation.

5.1 The ff_mdf data-flow skeleton

The mdf skeleton in FastFlow called ff_mdf implements the macro data-flow parallel pattern. The run-time of the FastFlow mdf pattern is responsible for scheduling fireable instructions (i.e. those with all input data dependencies ready) and managing data dependencies.

Currently, the internal implementation of the FastFlow mdf pattern is a 2-stage pipeline, the first stage is responsible for dynamically generating the graph instructions by executing the users’ code, and the second stage (a task-farm with feedback channel) is responsible for managing task dependencies and task scheduling. In the next version of FastFlow, other different implementations using less resources will be provided to the users.
ff_mdf run-time components:

At the general level, it is possible to identify the following main parts of the FastFlow mdf run-time:

- Dynamic construction of the task graph (DAG): in complex programs, the task graph could be very large; its generation time can affect significantly the computation time, and the memory required to store the entire graph may be extremely large. To overcome these issues, a solution is to generate the graph during the computation of tasks (and possibly overlap task generation and task computation), such that only a window of the graph is maintained in memory.

- Handling inter-task dependencies: Handling task dependencies, i.e. updating dependencies after the completion of previously scheduled tasks and determining ready (fireable) tasks to be executed.

- Scheduling of fireable tasks: a task having all input dependencies ready may be selected by the interpreter for execution. This selection needs to be performed in a smart way in order to optimise cache locality, particularly important on shared-cache multi-core, and at the same time trying to maintain a good load balancing among worker threads.

Creating graph tasks

In order to show how to use the mdf pattern, let’s take a look at the following simple case. Suppose you have the following sequential code:

```c
const size_t SIZE = 1<<20;
allocate(A, B, C, D, size);
sum2(A, B, SIZE); // executes A = A + B;
sum2(C, B, SIZE); // executes C = C + B;
sum2(D, B, SIZE); // executes D = D + B;
sum3(D, A, C, SIZE); // executes D = A + C + D;
```

Here we can identify 4 macro instructions that can be executed concurrently with the FastFlow mdf pattern by specifying, for each instruction, which are the input or output parameters of the function that has to be executed (in this case sum2 and sum3). For example, the first instruction in the code above has two input parameters (A and B) and one output parameter (C) that have to be passed to the function sum2. A parameter is provided to the run-time...
as `param_info` type, which has two fields, one is the pointer of the input or output of the "real" parameter and the second is the "direction" which can be `INPUT`, `OUTPUT` or `VALUE` (this last one is used mainly for those parameters that can be evaluated as a single value, do not constitute a real dependency).

The function and the parameters are passed to the run-time using the `AddTask` method of the `mdf` class. The resulting code is the following one:

```cpp
#include <ff/mdf.hpp>
using namespace ff;

const size_t SIZE = 1<<8; //1<<20;

void sum2(long *X, long *Y, const long size);
void sum3(long *X, long *Y, long *Z, const long size);

template<typename T>
struct Parameters {
 T* mdf;
}

void taskGen(Parameters<ff::mdf>* P){
 long *A = P->A; long *B = P->B;
 long *C = P->C; long *D = P->D;
 auto mdf = P->mdf;

 std::vector<param_info> Param;
 Param.push_back({(uintptr_t)A,INPUT}); // A = A + B;
 Param.push_back({(uintptr_t)B,INPUT}); // 2nd param
 Param.push_back({(uintptr_t)A,OUTPUT}); // pack the parameters in one single vector
 Param.push_back({1,INPUT}); Param.push_back({2,INPUT}); Param.push_back({3,INPUT});
 mdf->AddTask(Param, sum2, A,B, SIZE); // create on task

 Param.clear();
 Param.push_back({(uintptr_t)C,INPUT});
 Param.push_back({(uintptr_t)B,INPUT});
 Param.push_back({(uintptr_t)C,OUTPUT});
 Param.push_back({1,INPUT}); Param.push_back({2,INPUT}); Param.push_back({3,INPUT});
 mdf->AddTask(Param, sum2, C,B,SIZE);
}

// C = C + B;
Param.clear();
Param.push_back({(uintptr_t)D,INPUT});
Param.push_back({(uintptr_t)B,INPUT});
Param.push_back({(uintptr_t)D,OUTPUT});
Param.push_back({1,INPUT}); Param.push_back({2,INPUT}); Param.push_back({3,INPUT});
mdf->AddTask(Param, sum2, D,B,SIZE);
```

62
60 } // D = A + C + D;
61 {
62 Param.clear();
63 const param_info_1={(uintptr_t)A,INPUT};
64 const param_info_2={(uintptr_t)C,INPUT};
65 const param_info_3={(uintptr_t)D,INPUT};
66 const param_info_4={(uintptr_t)D,OUTPUT};
67 Param.push_back(_1); Param.push_back(_2);
68 Param.push_back(_3); Param.push_back(_4);
69 mdf->AddTask(Param, sum3, D,A,C, SIZE);
70 }
71 }
72 }
73 int main() {
74 long *A = new long[SIZE], *B = new long[SIZE];
75 long *C = new long[SIZE], *D = new long[SIZE];
76 for (size_t i=0; i<SIZE;++i) {
77   A[i]=i; B[i]=i+1; C[i]=i+2; D[i]=i+3;
78 }
79 // creates the mdf object passing the task generator function
80 Parameters<ff_mdf>P;
81 ff_mdf dag(taskGen, &P);
83 if (dag.run_and_wait_end() <0) error("running dag");
84 return 0;
85 }
86 }

5.2 Examples

In this section we propose two numerical application: the block-based matrix multiplication and the block-based Cholesky factorisation.

5.2.1 Block-based matrix multiplication

As a more complex usage example of the FastFlow mdf pattern we consider here the block-based matrix multiplication algorithm. The algorithm is sketched in Fig. 5.2.

This version computes in parallel the $C_{ij}$ blocks doing $p$-passes. A more cache-friendly implementation can be implemented.

```cpp
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <ff/mdf.hpp>
#include <ff/parallel_for.hpp>
using namespace ff;

const double THRESHOLD = 0.001; // enable/disable spinWait
bool PFSPINWAIT=false; // parallel_for parallelism degree
int PFWORKERS=1; // default static scheduling of iterations
int PFCRAN =0; //

void random_init (long M, long N, long P, double *A, double *B);
```
Figure 5.2: Block-based matmul algorithm

```
long parse_arg(const char *string);
void printarray(const double *A, long m, long n, long N);
// executes the standard ijk algorithm on a single block
void blockMM(long b, const double *A, const long AN, const double *B, const long BN, double *C, const long CN) {
 ParallelFor pf(PFWORKERS,PFSPINWAIT);
 pf.disableScheduler(true); // removes the scheduler thread
 pf.parallel_for(0, b, 1, PFGRAIN, [A,B,AN,BN,CN,b,&C] (const long i) {
 for (long j = 0; j < b; j++)
 for (long k = 0; k < b; k++)
 C[i*CN+j] += A[i*AN+k]*B[k*BN+j];
 });
}
// put the block pointed by C to zero
void zerosBlock(long b, double *C, const long CN) {
 for (long i = 0; i < b; i++)
 for (long j = 0; j < b; j++)
 C[i*CN+j] = 0.0;
}
// taskGen's parameters data type
template<typename T>
struct Parameters {
 Parameters(const double *A, const double *B, double *C):A(A),B(B),C(C) {};
 const double *A,*B;
 double *C;
 long AN,BN,CN; // stride
 long b, m, n, p; // size
 T* mdf;
};
// Block-based algorithm:
void taskGen(Parameters<T,mdf> *const P){
 const double *A = P->A;
 *B = P->B;
 double *C = P->C;
 long m=P->m,n=P->n,p=P->p,b=P->b;
 long AN=P->AN,BN=P->BN,CN=P->CN;
 long mblocks = m/b, nblocks = n/b, pblocks = p/b;
```
auto mdf = P->mdf;

// set C blocks to zero
for (long i = 0; i < mblocks; ++i) {
  for (long j = 0; j < nblocks; ++j) {
    double *Cij = &C[b*(i*CN+j)];
    std::vector<param_info> Param;
    const param_info _1 = {(uintptr_t) Cij, INPUT};
    const param_info _2 = {(uintptr_t) Cij, OUTPUT};
    Param.push_back(_1); Param.push_back(_2);
    // create a task
    mdf->AddTask(Param, zerosBlock, b, Cij, CN);
  }
}

for (long k = 0; k < pblocks; ++k) {
  for (long i = 0; i < mblocks; ++i) {
    for (long j = 0; j < nblocks; ++j) {
      const double *Aik = &A[b*(i*AN + k)];
      const double *Bkj = &B[b*(k*BN + j)];
      double *Cij = &C[b*(i*CN+j)];
      std::vector<param_info> Param;
      const param_info _1 = {(uintptr_t) Aik, INPUT};
      const param_info _2 = {(uintptr_t) Bkj, INPUT};
      const param_info _3 = {(uintptr_t) Cij, OUTPUT};
      Param.push_back(_1); Param.push_back(_2); Param.push_back(_3);
      // create a task
      mdf->AddTask(Param, blockMM, b, Aik, AN, Bkj, BN, Cij, CN);
    }
  }
}

int main(int argc, char* argv[]) {
  if (argc < 5) {
    printf("\n\tuse: %s <M> <N> <P> <blocksize>\n", argv[0]);
    printf("\n\tA is M by P\n");
    printf("\n\tB is P by N\n");
    printf("\n\tA[k] is the n. of workers of the mdf pattern\n");
    printf("\n\tB[k] is the n. of workers of the ParallelFor pattern\n");
    printf("\n\tCij is the ParallelFor grain size\n");
    printf("\n\tNOTE: the blocksize must evenly divide M, N and P: \n");
    return -1;
  }
  int nw = -1;
  long M = parse_arg(argv[1]);
  long N = parse_arg(argv[2]);
  long P = parse_arg(argv[3]);
  if (argc >= 6) nw = atoi(argv[5]);
  if (argc >= 7) {
    std::string pfarg(argv[6]);
    int n = pfarg.find_first_of("-");
    if (n>0) {
      PFWORKERS = atoi(pfarg.substr(0, n).c_str());
      PFGRAIN = atoi(pfarg.substr(n+1).c_str());
    } else PFWORKERS = atoi(argv[6]);
  }
  const double *A = (double*) malloc(M*P*sizeof(double));
  const double *B = (double*) malloc(P*N*sizeof(double));
  assert(A); assert(B);
  random_init(M, N, P, const_cast<double*>(A), const_cast<double*>(B))
};
5.2.2 Block-based Cholesky factorisation

To be added
Chapter 6

Task parallelism

TBA

\texttt{ff\_taskf}
Chapter 7

Targeting GPUs

TBA
Chapter 8

Targeting Distributed Systems

TBA
Bibliography


